Newton Toolkit User’s Guide

Preliminary.
Apple Confidential © Apple Computer, Inc. 1996

" Apple Computer, Inc.

© 1993 - 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer,
Inc., except in the normal use of the
software or to make a backup copy
of the software. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person.
Under the law, copying includes
translating into another language
or format. You may use the
software on any computer owned
by you, but extra copies cannot be
made for this purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, LaserWriter,
Macintosh, MPW, Newton,
PowerBook, and Power Macintosh
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.

Finder, the light bulb logo,
MessagePad, NewtonScript,
Newton Toolkit, PowerBook Duo,
ResEdit, and System 7 are

trademarks of Apple Computer, Inc.

Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Windows95, Windows NT3.5, and
Windows 3.1 are registered
trademarks of Microsoft
Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

11/95

Preface

Contents

About This Book XXi

Chapter 1

Related Books xxi

How to Use This Book xxi
Conventions xxiii

Developer Products and Support ~ xxv

Installation and Setup 1-1

Chapter 2
Newton Toolkit

System Requirements 1-1

Installing NTK on the Development System 1-2

Installing the Toolkit Application on the Newton 1-3
Making the Physical Connection ~ 1-4
Downloading the Toolkit Application 1-4

Testing an Inspector Connection 1-6

Troubleshooting ~ 1-7

Programming With the
2-1

Chapter 3

Terms and Concepts ~ 2-1
The NTK Development Process 2-3

A Quick Tour of NTK 3-1

Starting Up NTK 3-2

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

iii

Setting Up a New Project 3-2
Starting a Layout File and Adding It to the Project 3-6
Laying Out Application Elements 3-10
Customizing a View Template 3-11
Editing a Slot ~ 3-11
Adding aSlot 3-13
Building and Downloading a Package 3-14
Adding a Linked Layout 3-16
Laying Out a Linked View 3-17
Linking in the Layout ~ 3-19
Adding a Button That Displays the View 3-21
Defining Your Own Proto 3-23
Laying Out a Proto and Adding It to the Toolbar 3-23
Using Your Proto 3-29
Using the Inspector ~ 3-30
Connecting the Inspector 3-31
Executing Commands ~ 3-31
Looking at a Frame and a View 3-33
Making a Change in a Running Application ~ 3-34

Chapter 4 Managing and Building a Project 4-1

Setting Up a Project 4-1
Project File 4-2
Layout Files 4-3
Text Files 4-4
Bitmap and Sound Files ~ 4-4
Package Files 4-5
Object Stream Files 4-5
Establishing Settings and Preferences 4-6
Application Settings 4-6
Package Settings 4-9
Project Settings 4-12
Output Settings 4-16

iv

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Output 4-17
Result 4-19
Toolkit Preferences ~ 4-19
App Preferences 4-20
Packages Preferences 4-21
Connection 4-22
Build 4-22
Heaps Preferences 4-23
Layout Preferences 4-24
Browser Preferences 4-25
Browsers 4-26
Text Views Preferences 4-27
Building a Project =~ 4-28
The Build Environment ~ 4-29
Global Data File 4-29
Platform Files 4-30
Text Files 4-31
Constants and Variables 4-34
Compile-Time Functions 4-36
Defining Global Constants 4-37
Accessing Processed Templates 4-39
Accessing the Part Frame 4-40
Accessing Files That Aren’t in the Project ~ 4-41
Project-Build Function Summary 4-43
Build Options 4-43
Compiling Native Code 4-43
Embedding Debugging Information =~ 4-44
Combining Objects 4-44
Profiling ~ 4-45
Establishing a Local Language = 4-46
Output Options 4-47
Build Sequences 4-52
Building a Project 4-52
Processing a Template 4-53
Error Messages 4-54

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Chapter 5

Laying Out and Editing Views 5-1

Chapter 6

Laying Out Views 5-1
Drawing, Resizing, and Moving Views 5-4
Drawing a View 5-4
Resizing a View 5-7
Moving a View 5-8
Aligning Views 5-8
Ordering Views 5-10
Previewing 5-11
Naming and Declaring Views 5-13
Linking Multiple Layouts 5-14
Creating User Protos 5-16
Browsing and Editing Templates 5-16
Browsing Templates ~ 5-16
Adding Slots ~ 5-18
Editing Slots 5-20
Editing Text ~ 5-23
Searching for Text in Files 5-25
Searching Template Files 5-25
Searching the Active Window 5-26
Finding Views in a Layout File 5-27
Adding Non-View Objects ~ 5-28
Customizing the Text Editor ~ 5-28

Debugging 6-1

vi

Compeatibility 6-2
The Inspector ~ 6-2

Using the Inspector ~ 6-5
Making an Inspector Connection 6-5
Retrieving Views 6-7
Displaying the View Hierarchy ~ 6-8
Displaying Values in the Inspector Window
Examining a Binary Object 6-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Breaking 6-11

Examining the Program Stack 6-12

Tracing the Flow of Execution 6-14

Examining Memory Use 6-16

Examining Drawing Efficiency 6-20
Debugging Variables 6-21
Debugging Functions 6-22

Retrieving and Displaying Objects 6-23

Using Break Loops 6-26

Examining Memory Use 6-28

Examining Drawing Efficiency 6-30
Debugging Function Summary 6-31

Retrieving and Displaying Objects 6-31

Using Break Loops 6-31

Examining Memory Use 6-31

Examining Drawing Efficiency 6-31

Newton Programming Problems and Tips 6-32

Common Programming Problems 6-32

Setting the Wrong Slot Value 6-32

Failing to Set a Return Value 6-34

Producing Memory Problems With Unused Frame

References 6-34
Generating Unexpected Comparison Results With nil
Values 6-34

Using nil in Expressions 6-36

Writing to a Read-Only Object 6-36

Text Is Not Drawing 6-38

Problems with Printing and Communications 6-38
Programming Tips for Debugging 6-39

Using Global Variables to Examine Exceptions 6-39

Maintaining View State 6-39

Accessing the Parent of a View 6-40

vii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Chapter 7 Extended Debugging Functions 7-1

Compatibility ~ 7-2
Installing the Extended Debugging Functions ~ 7-2
Using the Extended Debugging Functions 7-2
Break Loops and Break Points 7-3
Enabling Break Points 7-3
Creating, Removing, and Disabling Break Points 7-4
Making Break Points Conditional 7-5
Entering a Break Loop 7-5
NewtonScript Stacks 7-6
Paths to Slots ~ 7-7
NewtonScript Byte Code 7-7
Extended Debugging Functions Reference 7-9
Adjusting the Debugging Environment 7-10
Manipulating Break Points 7-10
User-Defined Breakpoint Functions 7-13
Stepping 7-15
Accessing the Stack ~ 7-16
Retrieving Paths ~ 7-20
Disassembling 7-21
Summary of Extended Debugging Functions 7-22
Manipulating Break Points 7-22
Stepping 7-23
Accessing the Stack ~ 7-23
Retrieving Paths ~ 7-23
Disassembling 7-23
Interpreter Instructions 7-23
Stack Operations 7-25
Program Flow 7-30
While and Repeat/Until Loops ~ 7-30
For Loops 7-32
Foreach Loops (Frame and Array Iterators) 7-34
Exception Handling 7-36
Calling and Returning Functions 7-37
Primitive Functions 7-40

viii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Chapter 8 Tuning Performance 8-1

Measuring Performance 8-1
Marking Functions for Profiling 8-2
Configuring the Compiler for Profiling
Configuring the Profiler on the Newton
Collecting Statistics 8-7
Interpreting a Profile 8-8
Compiling Functions for Speed ~ 8-10
Declaring and Typing Variables 8-11
Stepping Through an Array 8-13
Handling Exceptions 8-13
Calling Other Functions ~ 8-13
Calling Options 8-14
Timing Interactions 8-16
An Optimization Example 8-17
Profiling Native Functions 8-19

Chapter 9 NTK Commands 9-1

File Menu 9-1
New Layout (Ctrl-N) 9-1
New Proto Template (Ctrl-T) 9-2
New Text File 9-2
Open (Ctrl-O) 9-2
Link Layout 9-2
Close (Ctrl-W) 9-3
Save (Ctrl-S) 9-3

Save As 9-3
Save All (Ctrl-M) 9-3
Revert 9-4

Print Setup 9-4
Print One 9-4
Print (Ctrl-P) 9-4
Exit 9-4

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Recent File 9-4
Edit Menu 9-5
Undo (Ctrl-Z) 9-5
Redo (Ctrl-A) 9-5
Cut (Ctrl-X) 9-5
Copy (Ctrl-C) 9-5
Paste (Ctrl-V) 9-5
Clear (Delete) 9-6
Duplicate (Ctrl-D) 9-6
Shift Left 9-6
Shift Right 9-6
Select All (Ctrl-A) 9-6
Select Hierarchy ~ 9-6
Select in Layout 9-7
Search (Ctrl-R) 9-7
Find (Ctrl-F) 9-8
Find Next (Ctrl-G) 9-8
Find Inherited 9-8
Newt Screen Shot 9-9
Toolkit Preferences 9-9
Project Menu 9-15
New Project ~ 9-15
Open Project 9-15
Add Window 9-15
Add File 9-15
Remove File 9-15
Update Files 9-16
Build Package (Ctrl-1) 9-16
Download Package (Ctrl-2) 9-16
Export Package to Text ~ 9-16
Install Toolkit App 9-17
Mark as Main Layout 9-17
Process Earlier (Ctrl-Up Arrow) 9-17
Process Later (Ctrl-Down Arrow) 9-17
Settings 9-17
Layout Menu 9-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Layout Size 9-22
Autogrid On 9-22
Set Grid 9-22
Move To Front 9-23
Move Forward (Ctrl-Down Arrow) 9-23
Move To Back 9-23
Move Backward (Ctrl-Up Arrow) 9-23
Alignment 9-24
Align 9-25
Preview (Ctrl-Y) 9-25
Browser Menu 9-25
Template Info (Ctrl-I) 9-25
New Slot 9-26
Rename Slot 9-27
Templates By Type 9-27
Templates By Hierarchy ~ 9-27
Slots By Name ~ 9-28
Slots By Type 9-28
Show Slot Values 9-28
Apply (Ctrl-E) 9-28
Revert 9-28
Window Menu 9-29
Open Inspector 9-29
Connect Inspector (Ctrl-K) ~ 9-29
New Browser (Ctrl-B) 9-29
Open Layout (Ctrl-L) 9-29
Cascade 9-30
Tile 9-30
Arrange Icons 9-30
Set Default Window Position 9-30
Help Menu 9-30
Index 9-30
Command Reference 9-30
Using Help ~ 9-30
About Newton Toolkit 9-31

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Appendix A

Keyboard Text-Editing Commands A-1

Appendix B

Setting the Insertion Point ~ A-1
Selecting Text A-3
Manipulating Selected Text A-4
Deleting Text A-5

Keyboard Shortcuts B-1

Appendix C

Custom Bitmaps and Sounds 5

Appendix D

Adding Bitmap and Sound Files to a Project 5
Using Bitmap and Sound Files 5
Opening and Closing Resource Files 5
Using the Resource-Handling Functions 6
Using Bitmaps 6
Making a Bitmap From a 'BMP"' File 7
Using External Sound Files 8
Custom Functions 8
Retrieving Resources 8
Summary of Custom Functions 11
Getting Custom Data 11

Specialized Slot Editors D-1

xii

Script Slots D-1

View Attributes D-2
viewBounds D-2
viewFlags D-4
viewFormat D-4
viewJustify ~ D-4

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

viewEffect D-5
viewTransferMode D-5
Specific Slots D-5

Appendix E Newton Debugging Applications

E-1

Installing the Debugging Packages E-1
HeapShow E-2
About HeapShow E-2
About Newton Memory Management E-2
Using HeapShow E-3
Statistics Display E-4
Preferences E-5
HeapShow Controls ~ E-8

Chapter 10 Glossary GL-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

xiii

Xiv

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

List of Figures

Installation and Setup 1-1

Table 1-1 Hardware and software requirements 1-2
Figure 1-1 The Newton Toolkit application icon 1-4

Figure 1-2 Toolkit Preferences- 1-5

Figure 1-3 The Toolkit application open on the Newton 1-7

Programming With the
Newton Toolkit — 2-1

Figure 2-1 The Newton application development process 2-4

A Quick Tour of NTK 3-1

Figure 3-1 Layout window and toolbar 3-7
Figure 3-2 A browser window 3-12

Managing and Building a Project 4-1

Figure 4-1 The project window 4-2

Figure 4-2 Settings-Application 4-7

Figure 4-3 Settings-Package 4-10

Figure 4-4 Settings-Project 4-13

Figure 4-5 Settings-Output 4-17

Figure 4-6 Toolkit Preferences-App 4-20
Figure 4-7 Toolkit Preferences-Packages 4-21
Figure 4-8 Toolkit Preferences-Heaps 4-23
Figure 4-9 Toolkit Preferences-Layout 4-24
Figure 4-10 Toolkit Preferences-Browsers 4-25
Figure 4-11 The Text Style dialog box 4-26

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

XV

Figure 4-12 Toolkit Preferences-Text Views 4-28

Table 4-1 Build constants defined by NTK 4-34

Figure 4-13 Output Settings 4-48

Figure 4-14 Custom part settings 4-52

Chapter 5 Laying Out and Editing Views 5-1

Figure 5-1 Layout window and toolbar 5-2

Figure 5-2 A layout window with the layout view and one child
view in place 5-6

Figure 5-3 The Alignment dialog box 5-9

Figure 5-4 The layout window in layout and preview
modes 5-12

Figure 5-5 The Template Info dialog box, for naming and
declaring views 5-13

Figure 5-6 Declaring views across linked layout files 5-15

Figure 5-7 A browser window with the view flags slot open for
editing 5-17

Figure 5-8 The New Slot dialog box 5-19

Figure 5-9 The Editor drop listin the New Slot dialog box 5-20

Figure 5-10 Initial contents of evaluate, script, and text
slots 5-21

Figure 5-11 The number, Boolean, rectangle, and picture slot
editors 5-22

Figure 5-12 The Inspector window with a help message
displayed 5-24

Figure 5-13 The Search dialog box 5-25

Figure 5-14 The dialog for searching with Find 5-27

Chapter 6 Debugging 6-1

Figure 6-1 Inspector window 6-3

Figure 6-2 The debugging cycle 6-4

Figure 6-3 Inspector controls 6-5

Figure 6-4 The DV display 6-8

Figure 6-5 A TrueSize display 6-16

Figure 6-6 A TrueSize display with object list 6-17

Figure 6-7 The TrueSize summary and result frame 6-18

xvi

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Chapter 7

Chapter 8

Chapter 9

Figure 6-8
Figure 6-9
Table 6-1
Table 6-2

A TrueSize listing of references 6-19
TrueSize measurements over time 6-20
Debugging variables 6-21

Exception handling global variables 6-39

Extended Debugging Functions 7-1

Tuning Performance 8-1

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Table 7-1

Table 7-2
Figure 7-7

Figure 7-8

A performance profile 8-4

The Project Settings dialog box 8-5
Profile Control on the Newton 8-6
Profiler Info 8-6

Profiler Settings on the Newton 8-7
A performance profile 8-8

Utility functions optimized for calling as global
functions from a native function 8-14

Function call operations 8-17

A profile of a native function calling another native
function, without native-function profiling 8-20
A profile of a native function calling another native
function, with native-function profiling 8-21

NTK Commands 9-1

Figure8-1
FigureO-1
Figure8-2
Figure8-3
Figure8-4
Figure8-5

Figure8-6

The dialog for searching with Search 9-7
The dialog for searching with Find 9-8

The App preferences of the Toolkit Preferences dialog
box 9-9

The Layout preferences of the Toolkit Preferences
dialog box 9-10

The Browsers preferences of the Toolkit Preferences
dialog box 9-11

The Text Viewspreferences of the Toolkit Preferences
dialog box 9-12

The Packages preferences of the Toolkit Preferences
dialog box 9-13

xvii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Figure8-7 The Heaps preferences of the Toolkit Preferences
dialog box 9-14

Figure8-8 The Application Settings panel of the Settings dialog
box 9-18
Figure8-9 The Package Settings panel of the Settings dialog
box 9-19
Figure8-10 The Project Settings panel of the Settings dialog
box 9-20
Figure8-11 The Output Settings panel of the Settings dialog
box 9-21
Figure8-12 The Layout Size dialog box 9-22
Figure8-13 The Set Grid dialog box 9-23
Figure8-14 The Alignment dialog box 9-24
Figure8-15 The alignment buttons on the palette 9-24
Figure8-16 The Template Info dialog box, for naming and
declaring views 9-26
Figure8-17 The New Slot dialog box 9-26
Figure8-18 The Rename Slot dialog box 9-27
Appendix A Keyboard Text-Editing Commands A-1
Table A-1 Moving the insertion point A-2
Table A-2 Selecting text with keyboard commands A-3
Table A-3 Manipulating selected text A-4
Table A-4 Deleting text with keyboard commands A-5
Appendix B Keyboard Shortcuts B-1
Table B-1 Keyboard equivalents to menu items B-1
Table B-2 Keyboard commands that affect the hierarchy B-2
Appendix C Custom Bitmaps and Sounds 5
Figure C-1 Adding a named 'BMP"' file to a picture slot 7

xviii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Appendix D

Appendix E

Chapter 10

Specialized Slot Editors D-1

Table D-1 Meaning of viewBounds fields for horizontal
justification D-3
Table D-2 Meaning of viewBounds fields for vertical

justification D-3

Newton Debugging Applications E-1

Figure D-1 The HeapShow icon E-3

Figure D-2 The default HeapShow display E-4

Figure D-3 Numerical data versus fragmentation graphics E-5

Figure D-4 HeapShow Preferences E-6

Figure D-5 Sizing the reserve pointers heap or a newly created
heap E-7

Figure D-6 Check Interval options E-8

Figure D-7 The HeapShow controls E-8

Figure D-8 Heap fragmentation graphics E-9

Glossary GL-1

xix

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

XX

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

PRETFAUCE

About This Book

Related Books

This book documents release 1.6 of the Newton Toolkit (NTK), an
integrated environment for developing applications that run on
the Newton family of personal digital assistants (PDAs).

This book is one of two shipped with NTK. Its companion is The
NewtonScript Programming Language, which documents the
language you use for programming in NTK.

You also use this book in conjunction with the Newton
Programmer’s Guide, a two-volume set that explains how to write
Newton programs and describes the system software routines you
use in your programs.

If you're using NTK to build on-line books, you need the Newton
Book Maker User’s Guide, which is shipped with the Book Maker
software.

How to Use This Book

This book is both an introduction and a reference guide to NTK.
You use this book to learn the basics of NTK before you can begin
using the other books in the Newton documentation suite. Later,
you use this book to learn about testing and debugging your
software.

xxi

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

xxii

PRETFAUCE

You must read a few parts of this book carefully; other parts you
can skim at the outset and come back to later. This book contains
nine chapters:

Chapter 1, “Installation and Setup.” Follow the instructions in
this chapter to install the Newton Toolkit on the development
system and on a Newton and to set up and test a connection to
the Newton.

Chapter 2, “Programming With the Newton Toolkit.” Read this
chapter for an introduction to Newton programming
terminology, an overview of the Newton development process,

and a description of the basic components of the Newton
Toolkit.

Chapter 3, “A Quick Tour of NTK.” If you want a hands-on
introduction to NTK, follow this tutorial to code, build, and
download a simple Newton application.

Chapter 4, “Managing and Building a Project.” Read the
introduction to this chapter to learn how you organize a
software project in NTK. Skim the rest of the chapter, and then
use it as a reference when you're actually setting up, coding,
and building your software.

Chapter 5, “Laying Out and Editing Views.” Skim this chapter
to learn how you can use the graphical editor and the browser
to lay out and code your software. Use it as a reference when
you're using the tools.

Chapter 6, “Debugging.” Read the first part of this chapter to
learn about the NTK debugging window—the Inspector—and
the functions you use to examine an application under
development. Skim the rest and use it as a reference when
you're using the tools.

Chapter 7, “Extended Debugging Functions.” Read this chapter
if you're using the extended debugging functions, which let
you look more closely at an application under development.

Chapter 8, “Tuning Performance.” Read the appropriate parts
of this chapter when you're ready to use the NTK profiler to

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

PRETFAUCE

collect performance statistics or the native compiler to speed up
execution of selected functions.

Chapter 9, “NTK Commands.” Use this chapter for reference.

This book also contains a number of appendices:

Conventions

Appendix A, “Keyboard Text-Editing Commands,” lists the
keyboard commands you can use to manipulate text in NTK.

Appendix B, “Keyboard Shortcuts,” lists the Command-key
equivalents to NTK menu items and other keyboard shortcuts.

Appendix C, “Custom Bitmaps and Sounds,” describes the
functions you use to manipulate bitmap and sound files
directly.

Appendix D, “Specialized Slot Editors,” lists the
special-purpose NTK slot editors.

Appendix E, “Newton Debugging Applications,” lists the small
Newton debugging functions shipped with NTK and
documents the HeapShow application, which displays Newton
memory statistics.

This book uses the following font and syntax conventions:

Couri er The Courier font represents material that is typed

exactly as shown. Code listings, code snippets,
and special identifiers in the text such as
predefined system frame names, slot names,
function names, method names, symbols, and
constants are shown in the Courier typeface to
distinguish them from regular body text.

italics Text in italics represents replaceable elements,

such as function parameters, which you must
replace with your own values.

xxiii

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

PRETFAUCE

boldface Key terms and concepts are printed in boldface
where they’re defined.

An ellipsis in a syntax description means that
the preceding element can be repeated one or
more times.

An ellipsis in a code example represents
code not shown.

[] Square brackets enclose optional elements in
syntax descriptions.

XXiv

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

PRETFAUCE

Developer Products and Support

APDA is Apple’s worldwide source for a large number of develop-
ment tools, technical resources, training products, and information
for anyone interested in developing applications on Apple
platforms. Every four months, customers receive the APDA Tools
Catalog featuring current versions of Apple’s development tools
and the most popular third-party development tools. Ordering is
easy; there are no membership fees, and application forms are not
required for most products. APDA offers convenient payment and
shipping options including site licensing.

To order product or to request a complimentary copy of the APDA
Tools Catalog:

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897
for information on the developer support programs available
from Apple.

XXV

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

PRETFAUCE

XxXvi

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

The Newton Toolkit (NTK) runs on various development systems in 32-bit
mode with a minimum of 8 MB of RAM. Its companion application, the
Toolkit App, runs on a Newton Personal Digital Assistant (PDA).

This chapter describes how to
= install NTK on a development system
= download the Toolkit application to a Newton PDA

= establish a debugging connection between the development system and
the PDA

= troubleshoot installation and setup

System Requirements

Table 1-1 lists NTK's hardware and software requirements.

System Requirements

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

1-1

CHAPTER 1

Installation and Setup

Table 1-1 Hardware and software requirements
Recommended Minimum

Model Pentium-based 25 Mhz 486-based processor
processor

Operating

Systems

Windows NT 3.5 24 MB 16 MB

Windows 3.1 with 16 MB 8 MB

Win32s extension

Windows 95 16 MB 8 MB

Installing NTK on the Development System

1-2

The Newton Toolkit is shipped with an installation script, which you run
from the distribution disk.

1. Exit any other applications that are running on the development system.
2. Insert the disk Newton Toolkit Installer.

3. Double-click the installation instructions and read them to learn what
your options are and how to adjust the installation script to your needs.
4. From the File Manager, double-click on the Setup.bat file.

This file will ask you for the drive on which you wish to install NTK. The
batch file will create a directory named WinNTK on the selected drive and
copy the necessary files into said directory. No other directories on your
drive will be touched.

5. Using the Fonts control Panel, install the font Espy.fon into your system.
This file can be found in the WinNTK directory just created in the
preceding step.

6. In the File Manager, double-click on NTK.EXE to launch NTK.

Installing NTK on the Development System

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

The Newton Toolkit directory contains the NTK application and various
support tools:

The Toolkit.pkg, an NTK companion application that runs on a Newton.
Instructions for installing the Toolkit application appear in the next section.

The EditCmds file, which is used by NTK and which must remain in the
same directory as NTK.

The MsgPad.txt file, contained in the Platfrms directory, which contains a
list of compile-time constants and functions available in NTK. This file is
for your information only and can be put anywhere.

The Platfrms directory, which at this release contains platform files named
MsgPad.ptf and Newton20.ptf and definition files for each.

Platform files contain data specific to a Newton platform. The Platfrms
directory must remain in the same directory as NTK. The definitions files
contain lists of compile-time constants and functions available when
you're using each platform. These files are for your information only and
can be put anywhere.

The Espy.fon file, which contains the fonts used by NTK. The Espy.fon file
is installed as other fonts in your system—using the Fonts Control Panel.

The Newton Package Installer, a stand-alone utility that downloads
packages to a Newton. You are free to ship this utility as an installation
tool for your customers.

The Newton Debugging Tools directory, which contains a collection of
debugging software. This software is described in Chapter 7, “Extended
Debugging Functions,” and Appendix E, “Newton Debugging
Applications.”

Release notes for the Newton Toolkit and the Platform files. These files are
for your information only and can be put anywhere.

Installing the Toolkit Application on the Newton

You can install the Toolkit application over a direct serial connection. Once
you’ve installed the Toolkit application, it manages subsequent installation of

Installing the Toolkit Application on the Newton 1-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

NTK packages and supports the Inspector, a debugging window that lets you
examine software running on the Newton device.

Making the Physical Connection

You can connect your development system directly to a Newton device with
a serial cable. Development systems have differing serial port connections, so
make sure to verify the necessary serial port settings before making the
connection.

You connect the cable between the serial connector on the Newton device
and one of the serial ports on the development system. You can any serial
port; NTK is configured to use the serial port by default.

Note

Serial ports come in two sizes—9-pin or 25-pin. On some
systems, a serial port may be labeled COM1, COM2, COM3,
or COM4. O

Downloading the Toolkit Application

This section describes how to install the Toolkit application on a Newton,
using a serial cable connection to one of the built-in ports on the
development system.

1. On the development system, start NTK by double-clicking the Newton
Toolkit application icon.

Figure 1-1 The Newton Toolkit application icon

-

MTE.

Installing the Toolkit Application on the Newton

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

The development system displays the open-file dialog box, for opening an
NTK project.

2. Dismiss the dialog box by clicking Cancel.

3. Choose Toolkit Preferences from the Edit menu. The system displays the
default Toolkit Preferences-App dialog box.

4. Click the tab labeled to view the Toolkit Preferences-Packages dialog box
as shown in Figure 1-2.

Figure 1-2 Toolkit Preferences-
Mewton Toolkit
App I Layout | Browsers I T et Wievs | Packages | Heaps I

Tope: ISB[ia| "l Poit: |C0nﬂ: "l

¥ Auto Save Befare Building Package
™ &uto Download After Building Package

" Connection:

0K I Cancel Spply HEel@

5. Set the Connection Type to Serial.

6. Set the Port, depending on your configuration. For example, choose
COML1 as the connection port if that is the chosen port on your
development system.

7. Click OK.

8. Choose Install Toolkit App from the Project menu.
NTK prompts you to initiate the connection on the Newton.

Installing the Toolkit Application on the Newton 1-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

9.

10.
11.

On the Newton, tap the Connection application to open it. The exact
appearance of the Connection application depends on what version you're
using.

Verify that the connection setting matches your configuration.

Tap Connect.

The Newton reports that the Connection application is waiting for a
response. In a few seconds, the dialog disappears, and a toolbox icon
labeled Toolkit appears in the Extras drawer.

NTK Toolkit application installation is complete.

Testing an Inspector Connection

An Inspector connection lets you issue commands directly to the Newton
device from a window on the development system. You can only use the
Inspector over a serial line.

These instructions assume that you’ve already set the NTK connection
preferences as described in “Downloading the Toolkit Application”
beginning on page 1-4

1.

On the development system, choose Connect Inspector from the Window
menu.

NTK prompts you to initiate the connection on the Newton.

. On the Newton, open the Toolkit application by tapping its icon in the

Extras drawer. Figure 1-3 illustrates the open Toolkit application.

1-6 Testing an Inspector Connection

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 1

Installation and Setup

Figure 1-3 The Toolkit application open on the Newton

Toolkit

®Connect Via Serial

[Profile Control]

[Connect Inspector]

[Download Package]

The Profile Control button appears only if the attached Newton supports
profiling.

3. Verify that Serial is selected, otherwise, change the selection.

4. Tap Connect Inspector.

The development system and the Newton establish communication, and
the development system displays the Inspector window.

5. In the Inspector window, type these characters without pressing Return.

1/5

6. Press Enter.
The Inspector displays the value of the statement.

#440D2F1 0. 200000

Troubleshooting

If you have trouble launching NTK, try these troubleshooting strategies:

» Verify that the development system is using Windows 95, Windows NT
3.5, or Windows 3.1 with Win32s extensions as its operating system.

Troubleshooting 1-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

1-8

CHAPTER 1

Installation and Setup

» Verify that the directory containing the Newton Toolkit application also
contains a Platfrms directory that contains the MsgPad.ptf or
Newton20.ptf file.

= Read the release notes.

If you have trouble downloading the Toolkit application or making an
Inspector connection, try these troubleshooting strategies:

» Verify that you're using the appropriate serial cable and port.
= Reset the Newton.
s If the Newton device has little free space, remove some software.

= Read the release notes.

Troubleshooting

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 2

Programming With the
Newton Toolkit

The Newton interface is a graphical one, in which the user manipulates
elements on the screen to accomplish a wide range of tasks.

The Newton Toolkit is an integrated environment tailored to the graphical
nature of the Newton environment. This chapter introduces the concepts and
terminology used in Newton programming and outlines the software
development process.

Terms and Concepts

Views are the basic building blocks of most applications. The individual
items on the Newton screen—radio buttons, for example—are all views, and
there may be views that are not visible.

You lay out views using NTK's graphical editor. When you draw a view,
NTK creates a template, that is, a data object that describes how the view

Terms and Concepts 2-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

2-2

CHAPTER 2

Programming With the Newton Toolkit

will look and act on the Newton. You build your application from a
collection of templates that describe the application’s elements.

A template is a frame, the basic data structure in NewtonScript. A frame is
an object containing a collection of named data references called slots. You
define a view’s characteristics and behavior by specifying the contents of the
slots in its template.

You write the code that controls the behavior of a view in NewtonScript, an
object-oriented language developed for the Newton. NewtonScript is
described in The NewtonScript Programming Language.

Views are created from templates when your application executes on the
Newton. The process of making an object, such as a view, at run time, from a
template, is called instantiation.

A view has two parts: the visual object you see on the screen, and a frame in
memory containing transient data used at run time. This frame is sometimes
called the view frame.

Applications can also include non-graphical components, such as
communication services, that have no visible manifestations. Like views,
these objects are described by templates and are instantiated at run time into
a frame that exists in working RAM.

Newton applications are stored on ROM-based PCMCIA cards or in a
protected part of the Newton memory. The Newton does not copy an
application (in this case, a collection of templates) into working RAM when
executing it. Therefore, templates are read-only objects. Views are their
dynamic, writable counterparts.

When the Newton instantiates a view, it creates a view frame in working
RAM. The view frame contains a pointer to the template. Information is read
from the template as needed. If a value changes at run time, a slot is added to
the view frame, and the new value is stored there. This memory-use strategy
allows applications to use relatively small amounts of working RAM.

This architecture also makes available to your application all templates built
into the Newton ROM. When you use a view template from the NTK toolbar
(described in Chapter 5, “Laying Out and Editing Views”), your application

doesn’t have to contain the full template. Instead, NTK references the

Terms and Concepts

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 2

Programming With the Newton Toolkit

templates in the Newton ROM and places only your modifications in the
application.

The Newton Programmer’s Guide contains a full description of the Newton
view system and the templates and functions you use when programming a
Newton application.

The NTK Development Process

You manage an application under development as an NTK project, that is,
the collected files and specifications NTK needs to build a data package that
can be downloaded to and executed on the Newton. The section “Setting Up
a Project” beginning on page 4-1 describes how you organize a project in
NTK.

You lay out an application’s views with NTK'’s graphical editor and a toolbar
of view templates. The graphical editor creates layout files, that is, files
containing the templates that describe the application’s views. The section
“Laying Out Views” beginning on page 5-1 describes the graphical editor
and toolbar.

You use the NTK browser to search through and edit the templates in a

layout file. The section “Browsing and Editing Templates” beginning on
page 5-16 describes the NTK browser.

Once you've programmed your application, you use NTK to build a
package, that is, a data object that can be installed on the Newton. The
section“Building a Project” beginning on page 4-28 describes the build cycle.
You also use NTK to download the package to the Newton.

You can study and alter your application while it's running with the
Inspector, NTK’s interactive debugger. Chapter 6, “Debugging,” describes
the Inspector.

Figure 2-1 illustrates the application development process.

The NTK Development Process 2-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 2

Programming With the Newton Toolkit

Figure 2-1 The Newton application development process

Set up project

Lay out views with
graphical editor

Edit templates
through browser

Build and
download package

| L

—[Debug with
;" Inspector

The NTK Development Process

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

This chapter introduces the major components of NTK and illustrates the
Newton application development process.

You can follow this tutorial to lay out, build, download, and examine a
simple application. The tutorial illustrates

= setting up an application project

= laying out the application’s visual interface

= coding the application

= building an application package and downloading it to a Newton
= inspecting the application while it’s running.

Note

This tutorial assumes that you're running NTK on a
development system with a physical connection to a Newton
device, as described in Chapter 1, “Installation and Setup.” O

The following three chapters, “Managing and Building a Project,” “Laying
Out and Editing Views,” and “Debugging,” describe the primary

3-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

components of NTK. You might want to read those chapters in conjunction
with proceeding through the tutorial.

Starting Up NTK

1. If NTK is not already running, double-click the Newton Toolkit
application icon to start NTK.

MTE.

NTK displays its startup screen followed by a file-open dialog box.

2. For this tutorial, click Cancel, because you're going to create a new project
from scratch, not open an existing project.

Setting Up a New Project

3-2

You build a Newton application from a collection of source files, which you
coordinate through a project file. The first step in creating an application
is to start a project file.

1. Choose New Project from the Project menu.
NTK presents the standard file-save dialog box.

Starting Up NTK

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

2. Create a new directory named Hello, and change the project name from
Proj ect 1 toHell o.

Open EE3
Lookim |23 'winNTK1.6b1 =l & s =

|_1 Platfrms

I_3 Resource.fik

File narme: IHeIIo Open I
Files of type: [Lapout Files [yt) =l Cancel |

This tutorial appends . NTK to the project filename to distinguish it from
other files stored in the same directory.

3. Click Save.
NTK displays the blank project window.

Sew. | Hamse | Ty Size | isoedl. Drate: | Path Nami

4. Choose Settings from the Project menu.

Setting Up a New Project 3-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK displays the application settings.

= MNewton Toolkit

Application | Package | Project | Output I
Mame: |He||o
Symbal: IHeIIo:TUT X Auto Cloze

lcon

File Mame: IDefauIt IEI

Ok I | Cancel I | Apply I | Help I

For this tutorial, change the Symbol to Hello:TUT, but don’t click OK just
yet.

Click the tab labeled Output.

Setting Up a New Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK displays the output settings, which determine the basic nature of the

software—whether you're building an application or a book, for
example—and a few specifics about some software types.

Mewton Toolkit
Application I FPackage l Froject | Output |
— Olutput
i : " Store Part
" Book ' Stream File
€ Auto Part € Custom Part: ||_|N|_N

Result:

™ Mew-Style Stares [Mewton 2.0 Only)

(] I Cancel | Sy Heln

5. Click the tab labeled Package.

Setting Up a New Project
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK displays the package settings, which specify the characteristics of an

NTK package.

Hewton Toolkit [x|
Application | Package | Project I Cutput I
Mame:

¥ Delete Old Package on Download

[" Copy Protected

™ Auto Remove Package

™ Use Compression

[¥ | Easter Campression

LCopyright:

|@1 993-1936 Apple Computer, Inc. Al rights reserved.

Wersion: |1
0k I Cancel e[| HElD |

6. Change the package name to Hel | 0: TUT and then click OK.

Starting a Layout File and Adding It to the Project

NTK provides a graphical editor for arranging the visual elements of your
application.

You typically start with the application base view, the screen image that
appears when the user starts the application. The application base view is the
ancestor of all other views in an application. It's the hub of the application,
both visually and structurally.

1. Choose New Layout from the File menu.

3-6 Starting a Layout File and Adding It to the Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK displays a layout window and a toolbar as illustrated in Figure 3-1,
which contains the Selection drop list and User-defined proto drop list to
assist in the creation of templates.

Figure 3-1 Layout window and toolbar

-~ |
==zl =] 2]] [FEsitview -] 2] [No Custom Protes -]

/ \ . \ User-defined
Layout - Doc1 _ [Tl x]| Selection proto drop list

drop list

View
alignment

The default layout window represents the screen of the Newton
MessagePad. Applications built for the MessagePad platform execute on
all Newton devices, although they do not support features exclusive to the
Newton 2.0 platform.

Starting a Layout File and Adding It to the Project 3-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

You can complete this tutorial using either platform. The default screen
sizes are slightly different.

1. Move the mouse to the Selection drop list, and click the button.
NTK displays the names of all view templates built into the Newton and
available through the selected platform file.

2. Select pr ot oApp.

The pr ot 0App proto defines a view with a few basic application features:
a title bar, a status bar, and a close box.

Most applications use either the pr ot 0App proto or the cl Vi ewview
class for the application base view. For descriptions of the system-defined
protos and view classes, see the Newton Programmer’s Guide.

3. Draw the base layout view, positioning it approximately as shown here.

T |
- 1
|8)

The rectangle you define here determines the size and location of the
application on the Newton screen.

Starting a Layout File and Adding It to the Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK labels your new layout view pr ot 0App, using the name of the proto
from which it was constructed.

4. Choose Template Info from the Browser menu.

NTK displays the Template Info dialog box, which lets you name and
declare view templates. (Declaring a view allows you to access the view
symbolically from another view, as described briefly in “Naming and
Declaring Views” beginning on page 5-13 and in more detail in the
“Views” chapter in Newton Programmer’s Guide.)

Template Info

Mame: I

= | Beslare Do I j

kK I Cancel |

5. Type the name hel | oBase, and then click OK.

6. Save the layout file by choosing Save As from the File menu, typing the
name Hel | 0, and then clicking Save.

7. Choose Add Hello from the Project menu.
NTK adds the layout Hello to the project file.

8. Activate the project window (by clicking the title bar or choosing the

project Hello from the Window menu) to see the list of files in the project,
which at this point includes only the file Hello.

Slzn Mod, Date

aH

A MDY

L]

NTK designates the first layout file you add to an application the main
layout file, that is, the layout file containing the application base view,

Starting a Layout File and Adding It to the Project 3-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

identified in the project window by a bullet next to its name. You can
change the designated main layout file through the Project menu.

9. Choose Save from the File menu to save the project file.

Laying Out Application Elements

You lay out the elements of an application within the application base view.
In this section of the tutorial, you add a view that accepts handwritten input.
1. Activate the layout window, now titled Hello, by clicking its title bar.

2. Using the Selection drop list, select pr ot oLabel | nput Li ne.

3. Draw out a rectangle inside the application base view, imitating the size
and location shown here.

bl kB aya prwksippt

prekd kel Inpa il insy

3-10 Laying Out Application Elements

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

Customizing a View Template

When you lay out a view, NTK creates a view template, a frame containing
the named slots that define the view.

You can edit view templates with NTK’s browser. The browser displays a list
of templates and a list of slots within a selected template. When you select a
slot for editing, the browser invokes a slot editor of the appropriate type.

Editing a Slot

In this section, you change the application’s title by editing the ti t | e slotin
the application base view template.

1. Select the application base view by clicking within the hel | oBase view
but outside the pr ot oLabel | nput Li ne view. Small selection marks
appear in the corners of the selected view.

Layout - Hello = B
helloBase <protofpp= - - - - - - - - - -
I;:urotoLabeIInputLine ----------- T
R .
Customizing a View Template 3-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

2.

Choose New Browser from the Window menu.

NTK displays a browser window for the base view, as illustrated in
Figure 3-2.

Figure 3-2 A browser window
"=:§.Bmwsel:2 - Hello (1O]
| helloBase <protoApp>
Template protoLabellnputLine _ Slot list
list
Slot o .
— & Speiic Methods Attributes ¥
pop-up . |]
menus h
Slot editor
~ area
The template list shows the templates for the selected view and all its
children. The slot list shows the slots for the view that’s selected in the
template list. The slot pop-up menus list system-defined slots you can add
to your templates. When you open a slot for editing, you work in the slot
editor area.
3. Click hel | oBase<pr ot 0App> to select it.
3-12 Customizing a View Template

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK displays the slot list for that template.

_proto

title
viewBounds
viewFormat

4. Click the t i t| e slot to open it for editing.
NTK displays the slot’s current contents, " Appl i cati on", in the
editing area.

5. Change the default text to
"Hel | o"

6. Apply the change by clicking the Apply check mark in the center-right of
the browser window.

Apply m Revert

When you apply a change to a slot that contains code, NTK checks the
syntax. It displays an alert if it finds any syntax errors, but it applies the
change in any case

You can also apply a change by pressing Ctrl-E or choosing Apply from
the Browser menu.
7. Save the layout file by choosing Save from the File menu.

Saving with either the browser window or a layout window active saves
the associated layout file.

Adding a Slot

You can add system-defined slots to a view through the pop-up menus
labeled Specific, Methods, and Attributes, located below the slot list in a
browser window.

SpeCific Methods Attributes

Customizing a View Template 3-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

You can also define and add your own slots by choosing New Slot from the
Browser menu, as described in “Adding Slots” beginning on page 5-18.

In this section of the tutorial, you add a label to the application’s pen-input
view by adding a | abel slot to the view template.

1. In the template list in the browser window, select
pr ot oLabel | nput Li ne by clicking it.

NTK displays the slots defined for that view, _pr ot 0 and vi ewBounds.

2. Choose | abel from the Specific pop-up menu.

NTK invokes the text editor and displays the default label, " Label " . It
adds the | abel slot to the slot list.

3. Replace the default label with your own text, such as
"Wite Here"

Building and Downloading a Package

At almost any point after you've laid out an application base view, you can
build your application into a package, which you can download and run on
a Newton.

1. Choose Build Package from the Project menu, or press Ctrl-1 on your
keyboard.

NTK builds the package and places it in the project directory. NTK places
the package in a file called projectname.pkg.

By default, NTK saves all files in a project before building. You can change
this feature through the Toolkit Preferences-Packages item in the Edit
menu.

3-14 Building and Downloading a Package

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

2. Choose Download Package from the Project menu.

Note

This tutorial assumes there is no Inspector connection open
but that you’ve set the communication settings on both the
Newton and the development system and downloaded the
Toolkit application, as described in “Installing the Toolkit
Application on the Newton” beginning on page 1-3.

If you’'ve made an Inspector connection, the Inspector
handles the downloading from this point, and you can skip
tostep 5. O

The development system reports its communication settings and prompts
you to initiate the connection on the Newton.

3. Tap the Toolkit icon in the Extras drawer on the Newton.
The Toolkit application opens.

OolKI

#Connect Via Serial

[Profile Control]

[Connect Inspector]

[Download Package]

4. Tap Download Package.

The development system reports progress during the download. When
downloading is complete, the application appears in the Extras drawer on
the Newton.

&

Hello

Building and Downloading a Package 3-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

5. Open the application by tapping its icon.

F i 7

"lirite Hera"

0, &

6. Test the application by writing in the input view.

Adding a Linked Layout

3-16

As an application grows more complex, the layout window can become
cluttered. You can split your application into logical modules and keep your
layout windows manageable by laying out child views in separate template
files and linking them into the application through an element called a

| i nkedSubvi ew available through the Selection drop list in the NTK
toolbar.

In this tutorial, you lay out a floating window in a separate layout file and
link it to the application base view. You bring it into the interface by adding
to the base view a button that, when pressed, sends an Open message to the
linked view.

Adding a Linked Layout

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

Laying Out a Linked View

1. Choose New Layout from the File menu.

2. Using the Selection drop list, select pr ot oFl oat NGo from the menu.

Like all layout files, a layout file for a linked view must have a main
layout view—in this case, a view based on pr ot oFl oat NGo—which is
the parent of all other views in the file.

3. Draw the view, positioning it approximately as shown here.

proful kbl

4. Choose Template Info from the Browser menu, name the view
f | oat er Li nk, and then click OK.

5. Using the Selection drop list, select pr ot oSt at i cText .

Adding a Linked Layout

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

3-17

CHAPTER 3

A Quick Tour of NTK

6. Lay out the text view within the layout view approximately as shown here.

prakokiaam G

i)

This rectangle defines the location of the static text message within the
linked view.

7. With the pr ot oSt at i cText view still selected, choose New Browser
from the Window menu. NTK displays a new browser.

'%-Bmwser:Z - Doc2 M= E3

| protoStaticText |

8. Click pr ot oSt at i cText to display the slots in that template.

9. Click the slot name t ext to open the slot for editing.
The browser displays the default text, " Stati ¢ Text".

10. Select the default text and replace it with your own message, such as
"Hello, world, froma linked view

11. Close the browser window.

3-18 Adding a Linked Layout

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

NTK automatically applies pending slot changes when you close a
browser window, when you save a file, or when you open a different slot
for editing.

12. Save the layout file with the name floatMsg.

13. Choose Add floatMsg from the Project menu to add the layout to the
project.

14. Activate the project window by clicking its title bar or by choosing Hello
in the Window menu.

15. Select the file floatMsg and then choose Process Earlier from the Project
menu or press Ctrl-Up Arrow to move it ahead of the main layout in the
project list.

16. Save the project file.

Linking in the Layout

You link an external layout into an application by adding a special element
called a linked subview to the main layout file and making a link between
that element and the external file.

1. Activate the main layout window, Hello.

2. Select| i nkedSubvi ew from the Selection drop list.

Adding a Linked Layout 3-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

3. Lay out the linked subview approximately as shown here.

® Layout - Hello ==

The placement of the linked subview element doesn’t matter. The position
of the view itself is determined by the linked template (in this case, the
f | oat er Li nk template in the layout file floaterMessage).

4. With the | i nkedSubvi ewview still selected in the layout window,
choose Template Info from the Browser menu.

5. Type in the name f | oat er Li nk, but don’t click OK yet.

This tutorial uses the same name for the linking view and for the layout
view in the external layout file because the two templates share the same
place in the view hierarchy. “Linking Multiple Layouts” beginning on
page 5-14 explains how NTK processes linked subviews and the layout
files they’re linked to.

3-20 Adding a Linked Layout

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

6. Click the box labeled Declare.

Template Info E

Name: IflnaterLink

¥ Declare To: IhelloBase j

] I Cancel |

Declaring the linked subview is not necessary for linking. You declare the
view in this step so that the button you add in the next section can send an
Qpen message to its sibling, the f | oat er Li nk view.

7. Click OK.

8. With the f | oat er Li nk view still selected, choose Link Layout from the
File menu.

NTK displays the file-select dialog box.

9. Select the filename floatMsg, and then click OK.

The Hello layout window now reflects that f | oat er Li nk is linked to the
linked view floatMsg.

Adding a Button That Displays the View

To incorporate the floater view into the application’s interface, you add to the
application’s base view a button that sends an Open message to the linked
view when it’s tapped.

1. With the Hello window still active, select pr ot oText But t on from the
Selection drop list.

Adding a Linked Layout 3-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

3-22

CHAPTER 3

A Quick Tour of NTK

2. Draw the button, positioning it approximately as shown here.

sl bms 7 pdaspps

pEdsLabalinpaiins

B bl 2 o il B b |||.--£|-Jﬂ

Pazlead in balkBam
Lhaiaek=d b _Radidia |

The rectangle you draw in this step determines the size and position of the
button on the Newton screen. All descendants of the application base
view must be contained entirely within the application base view; any
portions that fall outside aren’t visible on the Newton.

3. Use Template Info in the Browser menu to name the new view
showFl oat er But t on.

4. Activate the Hello browser window.

5. Select showFl oat er But t on<pr ot oText But t on> from the view list,
and then click the but t onCl i ckScri pt slot to open it for editing.

NTK invokes the script slot editor and displays a skeletal function
statement.

6. Insert an instruction to send an Open message to the f | oat er Li nk view:

Adding a Linked Layout

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

func()
begin

f1 oat erLi nk: Open();
end

7. Click the t ext slot to open it for editing.
This slot specifies the text on the button itself.

8. Change the default button text to
" Show Li nked Vi ew

9. Save the file.

10. If you want to test the linked view, build and download the application as
described in “Using the Inspector” beginning on page 3-30.

Defining Your Own Proto

This section of the tutorial creates a user proto—a proto defined by you, not
built into the Newton—that passes data among views.

If you needed this template in only one place, you'd likely lay it out as a
standard layout file. Defining a layout as a proto, however, opens up two
possibilities:

= You can use the same template in different views.

= Your application can use the proto to create views as needed at run time.

Laying Out a Proto and Adding It to the Toolbar

1. Choose New Proto Template from the File menu to open a proto layout
window.

You set up a proto template the same way you set up any other layout file:
you establish the layout base view and place other elements within it.

Defining Your Own Proto 3-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

2. Select cl Vi ewfrom the Selection drop list.

The cl Vi ewview class is the most basic container view.

3. Draw the layout base view approximately as shown here.

Ll

3-24 Defining Your Own Proto

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

4. Use Template Info to name the template sl i der Hol der.
5. Choose pr ot 0S| i der from the Selection drop list.

6. Draw a wide, shallow rectangle within container view.

DA R T

piwkxaiids

7. Select pr ot oSt at i cText from the list.

Defining Your Own Proto 3-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

8. Draw a static text view to hold the value of the slider.

e T

prwkaiids

9. Use Template Info to name the view out put Vi ewand to declare
out put Vi ewto sl i der Hol der.

10. Select pr ot oSt at i cText again from the list.

3-26 Defining Your Own Proto

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

11. Draw a view to hold a label.

Rl 8 H E e O e

|pm-$|ﬂh

12. Save the layout file as slProto, and then choose Add slProto from the
Project menu to add it to the project file.

13. Activate the project window, Hello.

14. Select slProto in the project window.

15. Choose Process Earlier from the Project menu, or press the Ctrl key and
Up arrow key once to move slProto ahead of Hello in the project list.

| Mod. Dile

IS RS

CIWINDOW

Defining Your Own Proto

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

3-27

C

A

HAPTER 3

Quick Tour of NTK

16. Tap the heading Seq. in the project window to display the files by their

17
18

19

20
21

22

23
24

25
26
27

order in the build sequence.

| Bhrw | ialged, Drnte | Path Hamn
Laymut w5 AR 6N 9966 RR P e
Ay AN 31 996-3;00AM = (e

L)
1176 177 G AR A6 3P e

. Save the project file.

. In the project window, double-click the filename slProto to open a browser
window, which lists the templates you've laid out.

clView : sliderHalder
protaSlider
protoStaticText : outputhiew
protoStaticText

. Select the unnamed static text view pr ot oSt at i cText .
The slot list displays the slots in that template.

. Select the t ext slot.

. Change the slot contents to
"slider val ue"

. In the template list, select the static text view
out put Vi ew<pr ot oSt ati cText >.

. In the slot list, select the t ext slot.

. Change the value to
||50”
By default, the slider begins in the middle of a 0-100 scale.

. In the template list, select the slider view, pr ot 0S| i der.
. In the slot list, select the changedSl i der slot.

. Insert the Set Val ue function so that the method reads:

3-28 Defining Your Own Proto

D

raft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

func()
begin

Set Val ue(out put Vi ew, 'text, NunberStr(vi ewal ue));
end

This line sets the value of the t ext slot in the out put Vi ewview to the
value of the slider.

28. Save the file sIProto.

Using Your Proto

Once you’ve saved your proto and added it to the project, NTK gives you
access to it through the User-defined proto drop list on the toolbar.

1. Activate the Hello layout window.
2. Click the User button to activate the User proto drop list.

ISIPrDtD |£I

The proto sl Pr ot o, the only item in the menu, is now selected.

3. Draw a view in the lower part of the application base view.

Regardless of where you try to draw the new view, NTK places it where
you placed the layout view for the proto sl Pr ot 0, because the view
inherits its location from its proto. As with all views, you can override the

Defining Your Own Proto 3-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

placement by adjusting the vi ewBounds slot when the view is
instantiated.

= Layout - Hello.lyt n

Declared in heloBaes . . | 0 . . . 0 . .
Linked to D:iHeliohWioster.

=

4. Build and download the package, as described in “Using the Inspector”
beginning on page 3-30.

5. Open the application and test the linked template and the slider.

This section completes the laying out and coding of the tutorial application.
In the rest of this chapter, you use this application to explore NTK's
debugging support.

Using the Inspector

3-30

The Inspector is a debugging window that lets you browse the Newton
object storage system and execute NewtonScript code on the Newton device.

The debugging functions used in this tutorial are documented in Chapter 6,
“Debugging.”

Using the Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

Connecting the Inspector

1. On the development system, choose Connect Inspector from the Window
menu.

The development system reports its communication settings and prompts
you to initiate the connection on the Newton device.

2. Verify that the message describes your configuration.

3. On the Newton, tap the Toolkit icon in the Extras drawer.
The Toolkit application opens.

®Connect Via Serial

[Profile Control]

[Connect Inspector]

[Download Package]

4. Verify that the connection type matches your configuration.

5. Tap Connect Inspector.
The Toolkit application reports that it's opening the Inspector.

When the Inspector connection is established, the Inspector window opens
on the development system.

Executing Commands

Code you enter in the Inspector window is compiled on the development
system and executed on the Newton device.

The Inspector compiles and executes your keystrokes only when you
explicitly request it by selecting and entering text. If no text is selected
when you press Enter in the numeric keypad or Ctrl-Enter on your
keyboard, the Inspector processes the current line.

Using the Inspector 3-31

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

1. In the Inspector window, type these characters—remember not to press
Enter on the numeric keypad.

1/ 3;

2. With the cursor on the same line as the text, press Enter on the numeric
keypad.
The Inspector displays the result of the statement in two ways: a transient
reference (preceded by a pound sign) and a textual representation.
#441A4C1 0. 333333

You can enter and execute any valid NewtonScript code in an Inspector
window. The Newton always prints to the screen the value of the last
statement evaluated.

3. Type:

Get Root () : SysBeep();

The Get Root function returns the Newton’s root view. This line sends the
SysBeep message to the root view.

4. Press Enter on the numeric keypad.

The Newton sounds the system beep, and the Inspector window displays
the result of the statement.

#1A TRUE

5. Place the two statements together on two lines:

Get Root () : SysBeep();
1/ 3;

6. Select both lines and press Enter on the numeric keypad.

The Newton executes both lines but displays the result of only the last
statement evaluated.

3-32 Using the Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK
#44126F1 0.333333

Looking at a Frame and a View

This section of the tutorial looks at the Hello application developed earlier in

this chapter. It assumes you have built and downloaded the complete

application.

1. Open the Hello application on the Newton by tapping its icon.
2. Open the floating window by tapping the Show Linked View button.

3. Enter in the Inspector window:

debug("fl oat erLi nk");

The Inspector displays the view frame for the view instantiated from the

f1 oat er Li nk template.

#440C359 { Parent: { Parent: {#4407939},
_proto: {#600044BD},
0x1108C45,

Vi ewCObj ect :
floaterlink:
vi ewBounds:
vi ewcl i pper:
base: <1>,

vi ewFl ags: 5},

_proto:{viewBounds: {#600047BD},

[#600047FD] ,
_proto: {#2D3},
debug: "fl oaterlLink",
preAl | ocat edCont ext :

vi ewCObj ect: 0x1108E20,

st epChi |l dren:

base: <1>,
vi ewFl ags: 65}

Using the Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

{#4414E61},
17861715,

floaterlink},

3-33

hel |oBase

| 120244

| 362116

| 281204

| 146154204
|93132404

| | 2915956

| 15783920

| showF | oaters
|=1iderHalder
| | 260448

| loutputliew
| 15783920

| floaterLink
| 11451352

| |57e3920

#2 MIL

3-34

CHAPTER 3

A Quick Tour of NTK

You can specify how many layers of child views and how many slots
within a layer are displayed by setting the pri nt Dept h and

pri nt Lengt h parameters, described in “Debugging Variables”
beginning on page 6-21.

. On the Newton device, close the floater window by tapping the close box.

. Put the insertion point anywhere in the line debug(" f | oat er Li nk") ;

and then press Enter on the numeric keypad.
The Inspector responds NI L, because the view is not instantiated.

. Enter in the Inspector window:

dv(debug("hel | oBase"));

The Inspector displays the named view and its children.

#4490009 [10, 4,2320,320] 10000005 wlizible wApplication wHasChildrenHint
#4416681 [103, 2,137, 18] 40000003 wisible wReadOnly

#4416751 [10,302,230,320] S0000001 wizible wHasChildrenHint

#44167YB9 [14,302, 31,3191 60000201 wisible wClickable vHasldlerHint
#4416841 [211,3204,224,2317] 40000202 wlizible wReadlnly wllickable

#4416081 [18, 52,226, 140] S0000201 wlizible wClickable wHasChildrenHint
#44168C9 [80, 52,226, 1401 40003A01 wlisible wClickable wGesturesAl lowed wChar=Allomec
#4416919 [12, 54, 20, 671 40000202 wlizible wReadlnly wllickable
#4416BE9 [13Z, 150,224, 1701 40000203 wisible wReadOnly wClickable
#4416001 [24,244 ,210,316] S0000001 wlizible wHasChildrenHint

#44 16059 [50,260, 194, 2761 40000201 wiszible wClickable

#4416C19 [170,284, 194,300] 40000003 wisible wReadOnly

#4446C01 [92,284, 162,200] 40000002 wlizible wReadlnly

#4416649 [20, 162,210,222] 10000041 wisible wFloating wHasChi ldrenHint
#4417001 [195,208,209,221] 40000202 wizible wReadlnly wllickable
#4417019 [32, 178,214,218] 40000002 wllizible wReadOnly

The numbers in the first column represent entries in a hash table used in
most Newton ROMs. To display the proto and view class names instead,
you can download to the Newton the file DebugHashToName.pkg, which
is distributed with NTK.

Making a Change in a Running Application

In this section of the tutorial, you change the button text
on the Newton screen by changing the value of the t ext slotin

its view frame.

1. Type the following in the Inspector window

Using the Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

Set Val ue(Debug("showFl oat erButton"), 'text, "Tap Here");
The button text changes to Tap Here.

2. Close the Hello application by tapping its close box, and then open it
again by tapping the icon.
The text reverts to Show Linked View, because the change affected only

the view frame that existed while the application was running, not the
view template from which the view was instantiated.

Using the Inspector 3-35

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 3

A Quick Tour of NTK

3-36 Using the Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a
Project

You manage an application under development as an NTK project, that is,
the collected files and specifications NTK needs to build a data package that
can be installed and executed on the Newton device.

This chapter describes how you use NTK to
= setup a project and organize the files in it
= establish settings and preferences

= build a project

Setting Up a Project

You manage an NTK project through the project file, which contains a list of
the files to be processed during the project build. To start a project, you create
a project file by choosing New Project from the Project menu.

Setting Up a Project 4-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

You can add to a project

= layout files, which contain templates for views you've laid out with
NTK’s graphical editor

= text files, which contain optional installation and removal scripts and
other NewtonScript code outside the scope of the view templates

= bitmap and sound files, which contain resources used during the build
» package files, which contain software ready to be installed on the Newton

= object stream files, which contain NewtonScript frames encoded in
Newton Streamed Object Format

Project File

The project file contains a collection of project settings and a list of the files to
be processed during the build. When the project file is open, NTK displays
the project window, illustrated in Figure 4-1.

Figure 4-1 The project window

4-2

| ahoed, [inte
AR HAG-GGP

Ar A 996-3;004M
17 i 99662 3Pl

You change project settings through the Settings command in the Project
menu, and you add files with the Add This File and Add File commands.

The file marked with an asterisk—Hello in Figure 4-1—is the main layout
file, that is, the file that contains the view at the top of an application’s view
hierarchy. NTK marks the first layout file you add to an application project as

Setting Up a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

the main layout file; you can change the designation by selecting another file
and choosing Mark As Main Layout from the Project menu.

During the build, NTK processes files in the order of their sequence
numbers, shown in the first column. To rearrange files, select one file at a
time and choose Process Earlier or Process Later from the Project menu. To
change the sequence from the keyboard, press Ctrl-Up Arrow to move a file
earlier in the build or Ctrl-Down Arrow to move it later. “Build Sequences”
beginning on page 4-52 summarizes the constraints on the ordering of files.

The size column shows the space the file occupies on the development
system.

You can change the order in which the files are displayed in the project
window by clicking the column headings. To display the files alphabetically
by name, for example, click Name. The heading that dictates the order—the
Seq. heading in Figure 4-1—is underlined.

Layout Files

Layout files contain the templates you've laid out and programmed using
the graphical editor and browser, which are described in Chapter 5, “Laying
Out and Editing Views.”

You create different kinds of layout files to hold
= the views and other templates your application uses on the Newton device

» view templates you've defined yourself—known as user protos—which
can be available both during the build and at run time.

NTK processes the files one at a time, in the sequence you specify through
the project window. Layouts that are used by other templates must be
processed before the layout files that reference them. User protos, for
example, must be processed before the layout files that use them. The last
layout file in a build is likely to be the main layout file or a custom view
template used only at run time.

“Processing a Template” beginning on page 4-53 describes how NTK
processes layout files.

Setting Up a Project 4-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Text Files

You use text files to

= supply code to be executed when a package is installed or removed by the
Newton system software

» define constants and functions you want available later in the build

» incorporate any other valid NewtonScript code outside the scope of the
layout templates

If you are using the Book Maker application you can also create text files that
hold text and formatting instructions for building on-line books.

“Text Files” beginning on page 4-31 contains more information on what you
can put in text files and how NTK processes them.

Bitmap and Sound Files

You can use NTK to incorporate bitmap and sound files into Newton
software.

NTK itself uses ' BMP' files. You supply your application’s icon as a* BMP'
file, and you can place ' BMP' files in picture slots through the picture slot
editor described in “Editing Slots” beginning on page 5-20.

You can draw your pictures in any graphics program and then paste them as
" BMP' files that you include in your project. Additionally, you can create
sound files in any sound program and save them as' WAV' files that can be
added to your project.

NTK also includes a set of compile-time functions that retrieve and
manipulate' BMP' , ' WAV' , and other resources. Appendix C, “Custom
Bitmaps and Sounds,” describes resources and the functions that handle
them. You add the resource files at the beginning of the project, and you
place the code that handles them in a text file.

Setting Up a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Package Files

When you build an application, NTK produces a package file—that is, a file
containing software to be installed on a Newton device.

A package file consists of a header containing package information and one
or more parts containing code and data. A part is a unit of software
recognizable by the Newton, such as an application, a book, or a data store.
When a package is installed on the Newton, the Newton system software
automatically opens the package and dispatches the parts to the appropriate
handlers.

Newton applications are stored in parts of type f or m books are in parts of
type book. NTK also supports a number of other part types, summarized in
“Output Settings” beginning on page 4-16 and described more fully in
“Output Options” beginning on page 4-47.

When NTK processes a project into a package, it produces one new part, of
the specified type. You can place additional parts in the same package by
putting the package files that contain them into the project. NTK places the
parts in the package as it encounters them during the build: It places parts
from package files that appear in the file list before the layout and text files
before the new part in the final package; it places parts from package files
that appear after the layout and text files after the new part. The final
package has the attributes established for the current build—the new
package—through the Package tab of the Settings dialog box. NTK ignores
the attributes of any other package files in the project.

The order of the parts in the package determines the order in which the parts
are installed and removed by the Newton system software.

Object Stream Files

You can use NTK to build object stream files—that is, files encoded in
Newton Streamed Object Format (NSOF). You can then incorporate these
stream files into your application by adding them to the project.

Setting Up a Project 4-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

You can use stream files to shorten the build time by preprocessing large data
structures or other static input. “Stream Files” beginning on page 4-50
explains how you can use stream files.

Establishing Settings and Preferences

You use the Settings item in the Project menu to establish build specifications:
» Application Settings determine the application’s name,symbol and icon.
» Project Settings establish project-wide choices, such as the target platform.

» Package Settings determine the features of the package that’s output from
a build.

» Output Settings determine what kind of part is being built, and, if the part
is an application or a book, ie, the part characteristics.

You use theToolkit Preferences items in the Edit menu—App, Layout,
Browsers, Text Views, Packages, and Heaps tabs—to configure NTK for your
hardware setup and working style.

Application Settings

You set the application’s name and symbol through the Application tab in
the Settings dialog box, illustrated in Figure 4-2. This is the default dialog
box for Settings.

4-6 Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-2 Settings-Application

Mewton Toolkit

Application | Package | Project I Output |

Marne:

Spmbal; IHeIID:SIG

¥ Auto Cloze

= lcon

Eile: Mame: IDefauIt j

ak I Cancel | Spply | HElF |

Name

Symbol

The text that appears beneath the application’s icon in
the Newton Extras drawer.

The application’s unique symbol, the alphanumeric
string by which the application identifies itself to the
Newton root view.

At the beginning of the build, NTK defines a constant
with the name kAppSynbol and sets it to the symbol
you specify here.

At the end of the build, if you've not created a slot with
the name appSynbol in the application base view, NTK

Establishing Settings and Preferences 4-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Auto Close

Icon

File Name

creates one and places in it the symbol you specify here.
If the slot exists already, NTK doesn’t overwrite it.

Apple recommends you build your application symbol
from the application name and your company’s
registered signature, using this convention:

name:signature

A developer with the signature SURF, for example,
might identify a checkbook application with the symbol
checkb: SURF.

To ensure uniqueness across third-party products, PIE
Developer Technical Support maintains a registry of
developer signatures. To register your signature, contact
the registry at the addresses listed at the front of this
book.

Abook does not use a symbol the same way an
application does; therefore, this field does not apply to
books.

Identifies this as an Auto Close application—that is, one
that closes when another Auto Close application opens.

This option is supported only on the Newton
MessagePad platform.

This characteristic does not apply to books.

The bitmap file containing the application’s icon
bitmap. The drop list displays all bitmap files in the
project.

Anamed ' BMP' file—in the specified file—that
contains the icon that represents the application in the
Extras drawer.

NTK can use only a' BMP" file for the icon. You can
supply a mask in a companion ' BW' file with the same
name followed by an exclamation point. If an icon is
named wave, for example, NTK looks for a mask with
the name wave! . (A mask is a parallel bitmap used to
display the icon when it’s selected. If you don’t supply
your own mask, NTK creates one.) Instructions for

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

creating ' BMP' files appear in Appendix C, “Custom
Bitmaps and Sounds.”

The selected icon appears next tothe drop lists—the
default icon appears only if there’s at least one resource
file in the project. The standard size for icons is 29 pixels
high by 31 pixels wide.

Package Settings

You can use NTK to build a package file—that is, a file containing software
ready to install on a Newton device—by choosing one of the package part
types in the Output tab of the Settings dialog box, described in “Output
Settings” beginning on page 4-16.

You specify the package name and other package characteristics through the
settings that appear when you click the tab labeled Package.

Establishing Settings and Preferences 4-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-3 Settings-Package

Mewton Toolkit

Application | Package I Project I Output |

MHame:

¥ Delete Old Package on Download
[Copy Protected

[Auto Remove Package

[Use Compression

[Easter Bompression

Copyright:
|©'I 933-1396 Apple Computer, Inc. All rights reserved.

Yersion; |1
] 4 I Cancel | Sppl | HElD |

Name The package name—that is, the name of the package as
it will be installed on the Newton device. Each package
on a Newton must have a unique name.

Apple recommends you build your package names and
application symbols from the application name and
your company’s registered signature, as described in the
documentation of the symbol on page 4-10.

Delete Old Package on Download
Invokes automatic package removal when you try to
download a package with the same name as a package
already in place on the Newton device. If this option is
in effect, NTK removes the old package and then
downloads the newly built package. If this option is not
in effect, you must remove an old package from the

4-10 Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Copy Protected

Newton before downloading a new package with the
same name.

Sets a field in the package header that marks the
package as copy-protected.

This field is a convention recognized by software that
copies packages; it is not an absolute lock against
copying.

A copy-protected package can be backed up and
synchronized to the desktop—users can copy the
package using selective restore. The Newton ROM,
however, refuses to beam or email a copy-protected
package.

Auto Remove Package

Use Compression

Faster Compression

Specifies a package whose parts are removed
immediately after they’re installed. The section “Parts in
Auto-Remove Packages” on page 4-50 describes the
impact of this option.

Specifies that the package be saved in compressed
format, which takes up less space on the Newton .
Software stored without compression runs faster and
uses less battery power.

This setting has no effect on the size of the package file
on the development system; the code is compressed on
the Newton device after downloading.

Specifies that the package use the Newton 2.0
compression strategy, which takes up 10-15% more
space on the Newton device but which decompresses
significantly faster.

This option is available only if Newton 2.0 Only is
enabled in Project Settings. Applications compiled with

Establishing Settings and Preferences 4-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-12

CHAPTER 4

Managing and Building a Project

Faster Compression enabled are incompatible with
earlier Newton models.

Copyright The copyright statement to be embedded in the package
header. This text is not displayed on the Newton device.

Version The version number to be placed in the package. In case
of conflict between packages with the same name, the
version number allows the Newton system software to
identify the newer and older versions. This number
must be an integer in the range 0 to 9999.

Project Settings

You set project-wide specifications through the Project tab in the Settings
dialog box illustrated in Figure 4-4.

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-4 Settings-Project

Newton Toolkit
Application I Package | Project | Output |
Platform; MSGRAD
Language: |English
¥ Compile for Debugging ™ Compile for Brofiling
[lgnare Mative Keywaord [| Erafile Hative Functiohs
W Check Global Function Calls [Mewton 2.0 Only
[MTE 1.0 Build Fules ¥ Faster Furetinrs (20 Gl
¥ Usze stepChildren Slot [¥ | Tiatter Hhject Facking (2.0]
™ Suppress Byte Code

ak I Cancel | Spply | HElF |

Platform

Language

The model of Newton on which the software will run.
The drop list displays all the platform files stored in a
folder with the name Platfrms in the same directory as
the NTK application.

The language code for use by the LocCbj function.
The section “Establishing a Local Language” on

page 4-46 explains how NTK uses the language string.
The LocQbj function is described in the localization
chapter in the book Newton Programmer’s Guide.

Compile for Debugging

Specifies a build with embedded debugging support.
When this option is enabled, the compiler adds a slot
named debug to each view that you name through
Template Info in the Browser menu. The value of the
debug slot is the view’s name. If you create your own

Establishing Settings and Preferences 4-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-14

CHAPTER 4

Managing and Building a Project

debug slot for a view, NTK does not override that
definition.

You can test to see whether this option is enabled by
testing the kDebugOn constant, which is t r ue when
Compile for Debugging is checked.

For more information about the Compile for Debugging
option, see “Embedding Debugging Information” on
page 4-44.

Ignore Native Keyword

Suppresses the native compiler, which compiles
functions defined with the f unc nat i ve syntax into
ARM machine code. For more information about
compiling into native code, see “Compiling Functions
for Speed” beginning on page 8-10.

You can test to see whether this option is enabled by
testing the kI gnor eNat i veKeywor d constant, which
is t r ue when Ignore Native Keyword is checked.

Check Global Function Calls

NTK 1.0 Build Rules

Leaves the compiler’s global-function checking intact.
When NTK compiles a global function, it checks the call
against its own table of global functions and reports
discrepancies in the Inspector window. This check is for
your information only; the outcome has no effect on the
build.

This option lets you suppress messages regarding global
functions you've defined yourself.

Invokes these build conventions from earlier releases of
NTK:

* As the last step in the build, NTK processes unused
user protos and places them in a slot in the base view.
The name of the slot is the name of the proto layout file,
with the prefix pt _. A proto saved in a file with the

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

name Handy View, for example, would be placed in a
slot with the name pt _HandyVi ew

¢ NTK does not define the constants kAppNarre,

kAppSt ri ng, kAppSynbol , and kPackageNane,
described in Table 4-1 on page 4-34.

Use stepChildren Slot

Suppress Byte Code

Instructs the compiler to place the views created by a
view’s children in a slot named st epChi | dr en. If this
checkbox is not checked, the compiler uses the name
vi ewChi | dr en instead.

Disabling this option is never appropriate when you’re
building software. As explained in the “Views” chapter
of Newton Programmer’s Guide, you must place child
views in the st epChi | dr en slot.

Instructs the compiler to omit from the output the byte
code version of a function compiled into native code.
This option is not meaningful if Ignore Native Keyword
is selected.

For more information about compiling into native code,
see see “Compiling Functions for Speed” beginning on
page 8-10.

Compile for Profiling

Turns profiling on. While this option is enabled, NTK
includes profiling support in any package it builds.

For a description of the profiler, see “Measuring
Performance” beginning on page 8-1.

You can test to see whether this option is enabled by
testing the kPr of i | i ngOn constant, which ist r ue
when Compile for Profiling is checked.

Profile Native Functions

Specifies individual profiling of functions compiled into
native code.

As explained in “Profiling Native Functions” beginning
on page 8-19, the distortion added by the profiling code
itself is especially noticeable in the execution of native

Establishing Settings and Preferences 4-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-16

CHAPTER 4

Managing and Building a Project

functions called by other native functions. If this option
is not checked, the profiler reports only those calls to
native functions that are made from interpreted
functions; the time reported includes time spent in any
other native functions called from that function. If this
option is checked, the profiler tracks and reports all
native function calls.

For Newton 2.0 Only

Makes available a number of options that are
compatible only with the Newton 2.0 platform.
Enabling this option alone has no effect on the build.
Disabling this option invalidates the settings of all
options that are compatible only with the Newton 2.0
platform.

Faster Functions (2.0 only)

Enables 2.0-style functions, which execute faster on the
Newton 2.0 platform. Functions compiled with this
option enabled are incompatible with earlier Newton
models.

Tighter Object Packing (2.0 only)

Align objects on four-byte boundaries instead of
eight-byte boundaries. The application takes up 3-5%
less space on the Newton with this option in effect.

Applications compiled with this option enabled are
incompatible with earlier Newton models.

Output Settings

In a single build, you can create either a package file or an object stream file.
A package file holds software to be installed on the Newton device. An object
stream file holds a hierarchy of NewtonScript frames encoded in Newton
Streamed Object Format.

A package file consists of a header containing package information and one

or more parts containing code and data. Each build produces one part, with
the characteristics you set through the Output tab of the Settings dialog box,
illustrated in Figure 4-5.

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-5 Settings-Output

Newton Toolkit
Application I Package | Project | Dutput |
— Output
T " Store Part
" Book € Stream File
" Auto Part " Custom Part: I|_|NKN

Result:

[Mew-Style Stores [Mewton 2.0 Only)

0k I Cancel | e[t | Help |

To display the output settings, click the icon labeled Output in the dialog box
that appears when you choose Settings from the Project menu.

Output

The Output selection determines whether a build produces a package file or
an object stream file and—if a package file—what part type it produces.

Establishing Settings and Preferences 4-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

You can use NTK to build any of four standard part types, an object stream
file, or an arbitrary part type you specify.

Application A part of type f or m which is usually an application
that’s installed in the Newton Extras drawer.
Book A part of type book, which contains a book file to be

processed by the Newton book reader. Parts of type
book are installed in the Extras drawer on the Newton.

Auto Part A part of type aut o, which contains only an installation
script and a remove script. You use aut o parts to hold
software that is not associated with a visible element in
the Newton Extras drawer. When the package is
downloaded, it is dispatched to the package handler,
but nothing is placed in the Extras drawer.

Store Part A part of type soup, which contains a store. If Store Part
is selected here, NTK makes available a global variable
named t heSt or e, which contains a store. It generates a
part of type soup that contains all data written to
t heSt or e during the build.

If you choose Store Part and For Newton 2.0 Only is
enabled in Project Settings, a checkbox labeled
New-Style Stores appears in the dialog box. If your
software is intended to run exclusively on the Newton
2.0 platform, check the New-Style Stores option.

Stream File A file in Newton Streamed Object Format.
If you choose Stream File, a field labeled Result appears
in the dialog box. You must enter in the Result field an

expression that evaluates to the top-level frame of the
output.

Custom Part A part of the type you specify here with a four-character
code.

If you choose Custom Part, a field labeled Result
appears in the dialog box. You must enter in the Result
field an expression that evaluates to the top-level frame
of the output.

4-18 Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Result

Result The Result field appears only if you choose Object
Stream or Custom Part among the Output options. You
muist enter in the Result field an expression—typically
a global variable—that evaluates at the top-level frame
of the output.

New-Style Stores[Newton 2.0 only]
Description needed.

“Output Options” beginning on page 4-47 discusses the output options in
more detail.

Toolkit Preferences

You use the Toolkit Preferences dialog box to
= set your build preferences

= identify a type and port for the connection between the development
system and the Newton

= build a project

Establishing Settings and Preferences 4-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

App Preferences

Figure 4-6 Toolkit Preferences-App

4-20

Newton Toolkit E3

App | Lapout | Browsers I Tent Wiews I Fackages | Heaps |
¥ Show the Standard Toclbar Al Toolbars
¥ Show the Layout Toolbar ’7|7 Show T ooltips ‘

¥ Show the [nspectar Toolbar

(] I Cancel i Hel@

The App settings of the Toolkit Preferences dialog box, as shown in
Figure 4-6, allow you to establish personalized views of the NTK toolbars.

Show the Standard Toolbar
When checked, the Standard Toolbar is displayed. The
Standard Toolbar displays icons for some commonly
used menu items, such as creating a new layout, proto
template, or text file; cut, copy, and paste; and building
and downloading a package.

Show the Layout Toolbar
The Layout Toolbar allows you to manipulate
alignment, template views, and proto views.

Show the Inspector Toolbar
This toolbar appears only when using the Inspector; the

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

icons represent menu commands relating to the use of
the Inspector.

Show Tooltips Tooltips display the appropriate menu command for an
icon. To view the menu command, simply place the
cursor over the icon and an information box will appear
within seconds.

You can place the toolbars anywhere within the file window by dragging and

dropping to the appropriate spot.

Packages Preferences

The Packages Preferences shown in Figure 4-7 provides for communication
settings between your development system and the Newton device as well
as for establishing build preferences.

Figure 4-7 Toolkit Preferences-Packages

Mewton Toolkit E2

App I Layout I Browwgers I T et Views | Packages | Heaps I

Connection:
’Vll,.lpe: ISElia| "l Port; |C0nﬂ: "l

¥ Auto Save Before Building Package
[&uto Download After Building Package

-

] 4 I Cancel i Help

Establishing Settings and Preferences 4-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-22

CHAPTER 4

Managing and Building a Project

Connection

The connection settings establish the communications protocol and port for
the connection between the development system and the Newton device.

Type The communications protocol for the connection with
the Newton device.

Port The communications port for the connection with the
Newton device.

Build

The bottom two settings establish what NTK does automatically when

building a package.

Auto Save Before Building Package
Invokes automatic saving of all open files in the project
before NTK builds a package. If any of the files have
never been saved, NTK prompts you for filenames.

Auto Download After Building Package
Invokes automatic downloading of the package to an
attached Newton device after a build.

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Heaps Preferences

Figure 4-8 Toolkit Preferences-Heaps

Newton Toolkit E3

App I Layout I Browsers I Text Views I Packages | Heaps |

Sizes in KBytes

Main Heap: Im Build Heap: i

Changes to Main Heap take effect after relaunching

0K I Cancel Soply Helg

The Heaps tab of the Toolkit Preferences dialog box, as illustrated in

Figure 4-8, establishes the sizes of the two NTK heaps.

Main Heap The size of the main frames heap that’s created when
you launch NTK. The main frames heap holds your
frame data while you're working in NTK.

Note that a change to this setting doesn’t take effect
until you quit and restart NTK.

Build Heap The size of the heap that holds application frame data
during the build. This heap is created each time you
build. It needs to be slightly larger than the package
being built.

Should NTK run out of heap space during a build, it will notify you and ask

for confirmation to automatically resize the build heap.

Establishing Settings and Preferences 4-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Layout Preferences

You can adjust the features of the graphical editor through the Layout
preferences of the Toolkit Preferences dialog box, illustrated in Figure 4-9.

Figure 4-9 Toolkit Preferences-Layout

Newton Toolkit E3

App | Layout | Browsers I Tent Wiews I Fackages | Heaps |

Arrow Keps Move By: |1
Size: |MessageF'ad 'I with Shift Kes: |5

(] I Cancel i Hel@

Changes in your layout preferences affect only layouts that you create after
making the changes.

Grid On Turns on autogrid in new layout windows. Autogrid
constrains the placement and sizing of views to align
with a layout grid. You can control the resolution of the
grid, and you can turn the grid on or off for an
individual window, through the Layout menu.

Size Establishes the initial size of layout windows. You can
choose one of the existing MessagePad models.
Regardless of the Screen size setting, you can change the

4-24 Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

size of an individual layout through the Layout Size
item in the Layout menu.

Arrow Keys Move By
Sets the number of pixels by which the selected view is
moved or resized when you press an arrow key.

With Shift Key Sets the number of pixels by which the selected view is
moved or resized when you press an arrow key while
holding down the Shift key.

Browser Preferences

You can adjust the display of templates and slots in browser windows and
the characteristics of the text editor through the Browser tab of the Toolkit
Preferences dialog box, illustrated in Figure 4-10.

Figure 4-10 Toolkit Preferences-Browsers

Mewton Toolkit E2

App I Layout | Browszers | Tt Wiews I Packages | Heaps I
Yiew List
Sort By: Hierarchy Eant |

Slot List

Sort B IName ;i Fant |

™ Show Slat Yalue

0K I Cancel | Spply | HEel@

Changes in your browser preferences affect only windows that you create
after making the changes.

Establishing Settings and Preferences 4-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Browsers

The browser settings control the ordering and font style of the view list and
slot list.

View List

The view list settings control the display of the view list.

Sort By Chooses a sort order for names in the view list. The
Name option sorts templates alphabetically by proto
name; Hierarchy sorts templates by their position in the
parent/child hierarchy.

Font Displays a dialog box, illustrated in Figure 4-11 through
which you specify the font style in which the template
names are displayed.

Figure 4-11 The Text Style dialog box

4-26

Font [7] x]
Fant: Fant style: Size:
[ysten) [Bold 12 ok
T Script MT Bold Nl e AR
Small Fonts B Bold Italic Cotiel |
T Symbol
T Terminal j
Timesz Mew Roman
T 'wingdings o ;I ;I
—Sample
| AaBbYyZz
Script:
IWestern :!

Establishing Settings and Preferences

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Slot List

The slot list settings control the display of the slot list.

Sort By Chooses a sort order for names in the slot list. The
Name option orders slots alphabetically by name; Type
orders slots alphabetically by data type.

Font Displays a dialog box, illustrated in Figure 4-11, through

which you specify the font style in which the slot names
are displayed.

Show Slot Value Invokes the display option that shows the slot value
after each slot name.

Text Views Preferences

The Text Views settings control the characteristics of the text editors you use
for editing slots and files.

Establishing Settings and Preferences 4-27

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-12 Toolkit Preferences-Text Views

Hewton Toolkit B

App I Layout | Browsers | Text Yiews | Packages | Heaps |

Tabs: IE_ Faont I

] I Cancel Sl Help

Auto Indent Enables automatic indenting, in which the editor
automatically indents a new line to the indent of the
previous line.

Tabs Sets the width of a tab, in spaces.

Font Displays a dialog box, illustrated in Figure 4-11 on
page 4-26, through which you specify the style in which
text is displayed.

Building a Project

4-28

NTK compiles and executes NewtonScript code, and processes templates
and data files, to produce a data object that can be used by the Newton
devices. The compiler compiles the text in the various source files, and the
interpreter executes the resulting code at predetermined points. The code
that executes during the build creates the objects that are placed in the

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

application. Objects in memory during the build do not necessarily exist at
run time.

Some of your code executes on the Newton device, some on the
development system, and some in both places. The Newton and the
development system run essentially the same interpreter, but the kinds of
commands executed tend to be different. Some functions—such as those that
handle bitmap or sounds—are available only on the development system.
The Newton Programmer’s Guide, which documents the other Newton
programming functions, identifies functions that are available only at
compile time. The resource-handling functions are described in this book in
Appendix C, “Custom Bitmaps and Sounds,” Compile-time functions that
address the mechanics of building software are described in this chapter in
“Compile-Time Functions” beginning on page 4-36.

The Build Environment

This section describes

= the global data file, which is compiled and executed when you open NTK
= the platform files, which contain platform data and utility functions

= the role of text files in a project

» the variables and constants NTK defines for you

Global Data File

The global data file is an adjunct to NTK. You can place in it NewtonScript
code that you want available from any project.

The global data file—an optional text file with the name GlblData.f stored in
the same directory as the NTK application—is compiled and executed once
each time you open NTK. Objects you create in the global data file are
available at compile time to any project you build.

NTK treats the entire global data file as if it were the body of one function
with no arguments. Because NewtonScript treats variables created within a

Building a Project 4-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-30

CHAPTER 4

Managing and Building a Project

function as local, you cannot define a function in the global data file with a
simple assignment statement:

nmyFunction : = func(x)

To assign a function to a variable you must either

= assign it to a slot, for example:

vars. nyFunction : = func(x)
or

» specifically declare it as a global function:

gl obal nyFunction (x)

If the compiler encounters an error in the global data file, it displays the error
type, filename, and line number. When you dismiss the error dialog box,
NTK quits. The prudent course is to develop code in a text file included in a
project and move it to the global data file only when it's debugged. If you
cannot launch NTK because of a problem in the global data file, you can
bypass it by removing the file from the NTK folder.

Platform Files

The platform files—stored in a directory named Platfrms in the same
directory as NTK—contain data tailored to different Newton products. The
platform files also contain a collection of Newton system definitions, a
number of utility functions, and definitions for constants that reference the
functions. The constant that represents a function is the function name with
the prefix k and the suffix Func (that is, kfunctionnameFunc).

The definitions file for each platform lists the functions in that platform file.

The platform file functions are available at compile time; you can make them
available at run time by incorporating them into your application in one of
two ways:

» In your application base view, define an evaluate slot with the same name
as the function and initialize it to the corresponding constant. For
example, to use the Newl nf o function, you create a slot named Newl nf o

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

and set its value to kNewl nf oFunc. You can then call the function by
sending a message to the application base view, for example:

:Newl nfo(argl, arg2);

= Call the function with the NewtonScript cal | syntax or the Appl y
function. This strategy saves space and time, because it does not require a
slot in the base view and avoids inheritance lookup; it also works in code
that doesn’t have access to your base view, such as the remove script. Here
is an example of using the cal | syntax to call a platform file function:

call kNewi nfoFunc with (argl, arg2);

This strategy does not work for functions used as methods, which must be
invoked using message sending. The Newton Programmer’s Guide identifies
which functions are used as methods and which are global functions.
Currently, none of the platform file functions is a method.

Text Files

You use text files to

= supply code to be executed when a package is installed or removed by the
Newton system software

= define constants and functions that you want available later in the build

= incorporate any other valid NewtonScript code outside the scope of the
layout templates

NewtonScript code in a text file is compiled and executed when NTK

processes the file. Objects you create in a text file are available throughout

the rest of the build.

You can use the NewtonScript const ant syntax to create constants with
literal values. This line, for example, creates a constant named kConst with
a value of 32:

constant kConst := 32;

When you use one of these constants as a value, NewtonScript substitutes
the literal value for the constant, as described in The NewtonScript
Programming Language.

Building a Project 4-31

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-32

CHAPTER 4

Managing and Building a Project

You can use the compile-time function Def i ned@ obal Const ant, described
in “Defining Global Constants” beginning on page 4-37, to set a global
constant equal to a function.

Install Scripts

An install script is an optional block of code that’s executed when an
application is installed on the Newton device—when the card containing it is
inserted, for example, or when the application’s package is downloaded.

After processing all files in the project, NTK looks for a variable with the
name | nstal | Scri pt . If it finds one, NTK uses it to build an install script,
which it places in the part frame in a slot named | nst al | Scri pt. Only
some part types use install scripts. (A part is defined in “Package Files”
beginning on page 4-5.)

In the case of an application, the install script is a function with one
argument:

I nstall Scri pt (partFrame)

partFrame The part frame for the application. This frame has a slot
named t heFor m which contains a reference to your
application’s base template.

The following install script, for example, registers an application with the
system Find and Intelligent Assist services.

Install Script := func(partFrane)
begi n

RegFi ndApps(kAppSynbol) ;

part Frane.result := regTaskTenpl ate(nyTenpl ate);
end;

An install script that makes changes to the system—Ilike the example here—
must be accompanied by a remove script that reverses the changes, as
illustrated in the example in the next section.

In the case of an auto part, the install script is a function with two arguments:

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

I nstall Scri pt (partFrame, removeFrame)
partFrame The part frame for the auto part. This frame contains no
t heFor mslot.

removeFrame A frame that will be passed to the remove script,
described in the next section. The remove frame
contains a single slot, which itself contains a copy of the
remove script.

An auto part must have an install script. “Auto Parts” beginning on
page 4-49 describes auto parts.

Remove Scripts

A remove script is an optional block of code that runs when your application
is removed from the Newton device—when you eject the card that’s holding
it, for example, or scrub its icon.

After processing all the text files in a project, NTK looks for a variable with
the name RenoveScri pt . If it finds one, NTK uses it to build a remove
script, which it places in the part frame in a slot named RenpveScri pt .
Only some part types use remove scripts. (The part types are described in
“Output Options” beginning on page 4-47.)

You can also optionally define a deletion script that’s executed only when
the application’s icon is scrubbed—not when the card containing it is
removed—as described in “Accessing the Part Frame” beginning on

page 4-40.

The remove script is a function with one argument. In the case of the an
application, the argument is the part frame:

RenmoveScri pt (partFrame)

partFrame The part frame for the application. Because the
application has been removed, the t heFor mslot
contains an invalid reference.

The following remove script, for example, removes an application’s registry
with the Find and Intelligent Assist services.

Building a Project 4-33

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-34

CHAPTER 4

Managing and Building a Project

RenoveScri pt : = func(partFrane)
begi n
UnRegFi ndApps(kAppSynbol) ;
unRegTaskTenpl at e(part Franme. resul t);
end;

In the case of an auto part, the argument to the remove script is the remove
frame that was passed to the install script:

RenmoveScri pt (removeFrame)

removeFrame The remove frame, which contains at least one slot,
which contains a copy of the remove script. The install
script can add other slots to the remove frame.

An auto part must have both an install script and a remove script. “Auto
Parts” beginning on page 4-49 describes auto parts.

Constants and Variables

NTK defines a number of constants and variables that you can use to access
files and templates and to check the status of build options.

Table 4-1 lists the constants NTK defines before and during a build.

Table 4-1 Build constants defined by NTK

Constant Value

hone The path name of the folder containing the
open project file

kAppNarre The application name you specify through

the Application/Book section of the
Application Settings dialog box

KAppSt ri ng The application symbol, which you specify
through the Application/Book section of the
Application Settings dialog box, stored as a
string instead of as a symbol

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Table 4-1 Build constants defined by NTK

Constant Value

kAppSynbol The application symbol you specify through
the Application/Book section of the
Application Settings dialog box

kDebugOn True if Compile for Debugging is checked in
the Project Settings dialog box

k1l gnor eNat i veKeywor d True if Ignore Native Keyword is checked in
the Project Settings dialog box

kPackageNane The package name you specify through the
Package Settings dialog box

kProfileOn True if Compile for Profiling is checked in
the Project Settings dialog box

| anguage The Language string specified through the
Project Settings dialog box

| ayout _filename A reference to the view hierarchy of the
processed layout file named filename

st reanti | e_filename A reference to the contents of a processed
stream file named filename.

The hone constant lets you reach a file in the same folder as the project file
without specifying the entire path name. For example:

LoadDat aFi | e(hone & "data", nyd ass);

This statement loads the data file named data in the same directory as the
open project file.

The constants kDebugOn, kI gnor eNat i veKeywor d, and kPr of i | eOn let
you check the status of compiler options during a build, so you can leave
debugging and profiling code in place in your source code.

This statement, for example, prints a message to the Inspector window only
if the option Compile for Debugging is enabled:

Building a Project 4-35

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-36

CHAPTER 4

Managing and Building a Project

i f kDebugOn then Print(“Executing this code”);

The compiler removes simple conditional statements that always evaluate to
ni | . The example here leaves no trace in the output whenever kDebugOn is
nil.

When NTK finishes processing a layout file, it creates a constant named
| ayout _filename, which references the view hierarchy defined by that file.

The function Get Layout , described in “Compile-Time Functions” beginning
on page 4-36, returns a reference to a view hierarchy. It is the preferred way
to access an external layout file.

When NTK finishes processing a print format layout file, it creates a variable
named pr i nt For mat _filename, which also references the view hierarchy
defined by that file. This variable is redundant with the | ayout _ filename
constant; it remains for compatibility with earlier releases.

When NTK finishes processing an object stream file, it creates a constant
named st r eanFi | e_filename, which references the contents of the stream
file.

Compile-Time Functions

NTK supplies a few compile-time functions that address the mechanics of
building software. You can use these functions to

» define and use compile-time constants (Def i ned obal Const ant,
Undef i ned obal Const ant, and | s@ obal Const ant)

= access the templates that result from processed layout files (Get Layout)

» set and retrieve slots in the part frame (Set Par t Fr ameSl| ot and
Get Par t Fr aneS! ot)

» process a text file that’s not included in the project (Load)

» read a Newton object stream file (ReadSt r eanFi | e)

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Defining Global Constants

You can use the compile-time function Def i ned@ obal Const ant in a text
file to create constants and initialize them with arbitrary expressions.

You use Undef i ne@ obal Const ant and | s@ obal Const ant to undefine
and test for global constants.

DefineGlobalConstant

Def i ned obal Const ant (symbol, expr)
symbol A symbol that names the value.
expr An expression that defines the value of the symbol.

The Def i ned obal Const ant function creates a constant referenced by the
specified symbol and with the specified expression value.

Use the NewtonScript const ant syntax instead of creating a constant with
Def i ned obal Const ant whenever possible. You must use

Def i ned obal Const ant instead of the const ant syntax to set a constant
equal to a function.

You can use Def i ned obal Const ant to make compile-time values
available at run time without adding a slot to the application base view. You
could incorporate your own named ' BMP' file, for example, by calling

Cet BMPASBI t s in a definition:

Def i ned obal Const ant (' kW en, Get BMPAsBi ts("Wen", true));

You could access the bits from within the application templates by
referencing the KW en constant. Suppose, for example, you're using a
resource to draw an image when a button is tapped. You can send the
CopyBi t s message, documented in the book Newton Programmer’s Guide, in
the button’s vi ewCl i ckScri pt method:

Building a Project 4-37

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-38

CHAPTER 4

Managing and Building a Project

: CopyBi ts(kWen, 5, 5, nodeMask) ;

Functions you define with Def i ne@ obal Const ant can be called with the
NewtonScript cal | syntax or the Appl y function. You could, for example,
define a function with the symbol kFunct i on:

Def i ned obal Const ant (* kFuncti on, func(x,y) X + vy);

You could then call the function within your application, without regard to
inheritance, with

call kFunction with (2,40);

Functions you create with Def i ne@ obal Const ant must be
self-contained, that is, they must not depend on the view context.

The Def i ned obal Const ant function accepts any valid expression that
can be evaluated at compile time.

The Def i ned obal Const ant function replaces the obsolete function
Def Const .

UndefineGlobalConstant

Undef i ned obal Const ant (symbol)
symbol A symbol that names the constant.
The function Undef i ned obal Const ant removes a global constant.

You use Undef i ned obal Const ant to remove constants you've created
with Def i ned obal Const ant . This line, for example, removes the global
constant with the symbol kW en:

Undef i ned obal Const ant (' kW en);

Undef i ned obal Const ant always return ni | .

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

IsGlobalConstant

| sA obal Const ant (symbol)
symbol A symbol that names the constant.

The function | sA@ obal Const ant reports whether a global constant with
the specified name exists; it returns t r ue if the constant is defined, ni | if it
isn’t.

Accessing Processed Templates

You can use the compile-time function Get Layout to reference the frame
containing a processed layout file.

GetLayout

Get Layout (filename)
filename A string containing the filename of a layout file.

The Get Layout function returns a reference to the view hierarchy that
resulted from the processing of the specified layout file. You use it to
incorporate templates from external layout files.

To add items at the top of a find slip, for example, you place in the
application base view a function that supplies the item templates, which you
lay out in a separate file and incorporate with a function slot something like
this:

myApp. Fi ndSl i pAdditions := func()
begin
return GetLayout ("nmyFi ndSli pAdditions");
end;

You can also use Get Layout to place in your application a reference to a
non-view object, such as the routing format frames required for sending data.

Building a Project 4-39

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

You can use the Get Layout function in conjunction with the . f or m
command in the Book Maker application to incorporate the layout files for
any small, application-like elements included in your book files. The . f or m
command, documented in the manual that accompanies the Book Maker
application, requires the height and width of the layout base view, which
you can get from the vi ewBounds slot for the view as displayed in the
browser.

If the specified layout file hasn’t been processed, the Get Layout function
generates a compile-time error. The Get Layout function therefore provides
earlier detection of unprocessed files than the | ayout _filename constant,
which doesn’t raise an error until the compiled code is executed.

Accessing the Part Frame

You can use the Set Par t Fr aneSl| ot function to add a slot to the part frame
that’s constructed during a build. You can use the Get Par t Fr aneS| ot
function to retrieve the contents of slots added with Set Par t Fr ameS| ot .

You can use the Set Par t Fr aneSl| ot function to define a deletion script—
that is, a block of code that’s executed when the icon for the package
containing a part is scrubbed on the Newton. The deletion script is a function
contained in the part frame in a slot with the symbol del et i onScri pt . For
example:

Set Part FrameSl ot (' del eti onScript, func()
begi n
foreach store in GetStores() do
i f s:HasSoup(kSoupNane) then
Get Soup(kSoupNan®e) : RenoveFr onSt or eXmi t (kAppSynbol) ;
end) ;

4-40 Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

SetPartFrameSlot

Set Part Fr aneSl ot (slot, value)
slot A symbol for the slot to be added.
value The value of the new slot.

The Set Par t Fr ameSl ot function adds a slot with the specified symbol and
value to the part frame. If the slot already exists, Set Par t Fr aneSl ot
changes its value.

If you specify a slot symbol that’s also used by NTK, your definition is
overridden during construction of the final part frame. You can’t therefore
use Set Par t Fr aneSl ot to establish an installation or removal script, for
example, or to define the t heFor mslot.

GetPartFrameSlot

Get Part Fr ameSl ot (slot)
slot A symbol for the slot whose value you want.

The Get Par t Fr ameS! ot function returns the value of the specified slot in
the part frame. Because NTK defines special slots like the install script and
the remove script at the end of the build, you can’t use Get Par t Fr aneS| ot
to access those slots.

Accessing Files That Aren't in the Project

You can use the compile-time function Load to incorporate text files that
aren’t listed in your project.

You can use the ReadSt r eanFi | e function to read an object stream file—
that is, a file in Newton Streamed Object Format.

Building a Project 4-41

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Load

Load(pathname)

pathname A string containing the path name of the file to be
processed.

The Load function compiles and executes the contents of a NewtonScript file
with the specified path name.

Placing files directly in the project list—instead of using Load—makes them
accessible to the NTK Search and Find commands and is the preferred way
to incorporate text files into a project.

ReadStreamFile

ReadSt r eanti | e(pathname)

pathname A string containing the path name of the object stream
file.

The ReadSt r eanFi | e function returns the object written in the specified

stream file.

You can create object stream files in NTK, as described in “Output Options”
beginning on page 4-47.

As an alternative to the ReadSt r eanFi | e function, you can add a stream
file directly to your project and then access it with the constant

st reanFi | e_filename, which NTK defines when it processes the file.

“Stream Files” beginning on page 4-50 describes how NTK processes stream
files.

4-42 Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Project-Build Function Summary

Def i ned obal Const ant (symbol, expr)
Undef i ned obal Const ant (symbol)

| sd obal Const ant (symbol)

Get Layout (filename)

Set Part Fr ameS! ot (slot, value)

Get Par t Fr ameSl! ot (slot)

Load(pathname)

ReadSt r eanti | e(pathname)

Build Options

This section provides more details about the build options available through
the dialog boxes described in “Establishing Settings and Preferences”
beginning on page 4-6.

Compiling Native Code

NTK can produce not only byte code to be processed by the Newton
interpreter but also native ARM code—that is, machine code to be executed
directly by the Newton’s ARM chip.

Native code executes significantly faster, but it occupies much more space in
memory. For compatibility with possible future models that don’t use the
ARM chip, NTK produces both byte code and native code when it compiles a
function into native code.

You can mark an individual function for native compiling by constructing it
with the f unc nati ve syntax:
func native (paramList) expression

You can invoke options in the Project Settings dialog box that cause NTK to
ignore the f unc nat i ve syntax or to suppress the byte code when
compiling native code.

Compiling functions into native code is described more fully in “Compiling
Functions for Speed” beginning on page 8-10.

Building a Project 4-43

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-44

CHAPTER 4

Managing and Building a Project

Embedding Debugging Information

You can specify a build with embedded debugging support through the
Project Settings item in the Project menu.

When Compile for Debugging is enabled, the compiler

» adds a slot named debug to each view that you name through Template
Info in the Browser menu. The value of the debug slot is the view’s name.
If you create your own debug slot for a view, however, NTK does not
override that definition.

» adds to each NewtonScript function it compiles a slot named
Debugger | nf o that contains either an integer or an array of debugging
information. This information is used by the debugging functions
described in Chapter 7, “Extended Debugging Functions.”

» skips the step of combining objects, described in the following section.

You can check the value of the kDebugOn constant to provisionally compile
your own debugging code only when Compile for Debugging is enabled, as
illustrated in “Constants and Variables” beginning on page 4-34.

Combining Objects

To reduce application size, NTK combines objects as a final step in the build
process—that is, if two objects are identical, NTK combines them and
references the single object wherever either object is used. If the string
“New” appears in the text slot for two different buttons, for example, NTK
creates a single text string object and references it in both button templates.

NTK combines objects only in frame-based part types (that is, not in store
parts or stream files). Combining objects usually reduces package size by
10-20%. The main side effect is that combined objects are less likely to be
stored near the code that references them.

The impact on performance is variable. The Newton OS pages package data
in to system memory as the data is needed. Because objects might be further
from the objects that reference them, more segments of a package might be
paged in during execution. That probability is offset by the likelihood that
there will be fewer pages overall.

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Be careful when using the functions that destructively modify strings; they
can affect more than intended when used on shared objects. The most
dangerous case is the empty string. Consider, for example, this frame:

constant kTenplate := {slotl: "", slot2: ""};

At the end of the build, NTK combines the two empty strings in the template
into a single object. Suppose you create an instance of the frame at run time
with DeepCl one and then use St r Munger to alter the value of the instance:

| ocal instance := DeepCd one(kTenpl ate);
StrMunger (i nstance.slotl1, 0, nil, "foo", 0, nil);

Deepd one creates a new writable string referenced in two places, and then
St r Munger destructively modifies that string. Evaluating

i nstance. sl ot 2 yields "foo". You can avoid the problem in this example
by using ni | instead of the empty string:

constant kTenplate := {slotl: nil, slot2: nil};

NTK normally combines objects in production builds, that is, builds where
Compile for Debugging is not enabled. You can suppress the combining of
objects in a production build by creating a global variable named

consol i dat eCbj ect sAf t er Bui | di ng and setting ittoni | .

Profiling

NTK includes a profiling tool that keeps statistics on an application while it's
executing on the Newton device. You can specify a build with profiling
support through the Project tab found in the Settings dialog box in the
Project menu.

To collect profiling statistics, you embed profiling code in your application
and then build the application with Compile for Profiling enabled. When this
option is enabled, the compiler assigns each function in the application a
unique identifier that it maps back to the source code, and it recognizes the
calls that turn profiling on and off during execution.

Chapter 8, “Tuning Performance,” describes the profiling tool in detail.

Building a Project 4-45

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-46

CHAPTER 4

Managing and Building a Project

Establishing a Local Language

You can specify through Project Settings a language string that the Loc Qbj
function uses to find localized versions of strings and other objects that
change when a piece of software is compiled for use in a specific country or
region.

The LocQbj function takes two parameters: an object and a path name to an
alternative object. If the language setting for a build is English, then Loc Obj
returns the embedded object. If you set the localization string to any other
value, LocQbj looks for the object in the place specified by the language
string together with the embedded path name.

If, for example, you display a message while searching for an object, you can
set up the message for any language by wrapping the string in the Locbj
function:

nsg := LocObj ("Searching for ~0.", 'find.searchfor)

The path name identifies a frame of localization data you establish—most
likely in a text file—with the Set Local i zat i onFr ame function:

Set Local i zat i onFrame({
Swedi sh: {
find: {
sear chFor:
"Soker efter ~0..", /1 "Searching for ~0..
1}
French: {
find: {
sear chFor:
"Recherche dans ~0..",// "Searching for ~0.."
1}
1)

When the Language setting in the Project Settings dialog box is English, NTK
uses the string included in the code itself (“Searching for name”). When the

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Language setting is Swedish, NTK looks for the string contained in the slot
Swedi sh. fi nd. sear chFor in the language frame.

The localization chapter in Newton Programmer’s Guide describes the Loc Qbj
function.

Output Options

You can use NTK to create either a package file or an object stream file. A
package file holds software to be installed on the Newton device. An object
stream file holds a hierarchy of NewtonScript frames encoded in Newton
Streamed Object Format. The NTK platform files, among other things, are
stored in Newton Streamed Object Format.

A package file consists of a header containing package information and one
or more parts containing code and data. Each build produces one new part.
You can incorporate additional parts in a package by putting their package
files in the project, as described in “Package Files” on page 4-5.

You specify the type of the new part through the Output tab of the Settings
dialog box, illustrated in Figure 4-13 and described in “Output Settings”
beginning on page 4-16.

Building a Project 4-47

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-13 Output Settings

4-48

Mewton Toolkit
Application I Package | Project | Dutput |
€ Store Part
B " Stream File
€ Auto Part ¢ Custom Part: II_INI«_N

Result:

[Mew-Style Stores [Mewton 2.0 Only)

] 4 I Cancel Sppl HElD

When you download a package to the Newton device—or when you insert a
PCMCIA card or otherwise add a software package—the Newton system
software installs the package by reading the header information and
dispatching the parts to the appropriate handlers.

NTK places an application, book, or auto part into a single part frame that
holds the slots appropriate to a part of that type.

You can add your own slots to the part frame with the Set Par t Fr aneS| ot
function, described in “Accessing the Part Frame” beginning on page 4-40.

Application Parts

NTK stores an application in a part of type f or m You assemble an
application from NTK layout files plus any text, bitmap or sound file, or
other files you need. You must designate one layout file as the main layout

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

file; it holds the application base view, which is the view that’s created when
you start up the application.

After processing all files in the project, NTK looks for global variables with
the special names i nst al | Scri pt and r enpveScri pt . If it finds one or
both, it uses them to create install and remove scripts, which it places in the
part frame. The sections “Install Scripts” and “Remove Scripts,” beginning
on page 4-32, describe install and remove scripts in more detail.

NTK also looks for a global variable with the name par t Fr ane. If one exists,
and if it contains a frame, then the slots in that frame are copied to the
application’s part frame. The approved way to add slots to the part frame,
however, is with the Set Par t Fr aneS| ot function, described on page 4-41.

Book Parts

NTK stores an interactive book in a part of type book. You build a book from
text files created by the Book Maker application, plus any layout files, bitmap
or sound files, or other files containing book elements.

A book doesn’t have a main layout file, and it doesn’t use install and remove
scripts.

Auto Parts

An auto part holds software that isn’t represented by an icon in the Extras
drawer. You can use an auto part to add a panel to the Prefs roll, for example,
or supply an application with data. You build an auto part from one or more
text files, plus any layout files, bitmap or sound files, or other files you've
used.

An auto part has no application base view, no application name, and no
application symbol. Its part type is aut o.

You can place your own data in an auto part frame by defining a global
variable with the special name par t Dat a. After processing all files in the
project, NTK looks for a variable named par t Dat a; if it finds one, it places
its value in the part frame in a slot with the name par t Dat a. NTK also
recognizes the global variablesi nstal | Scri pt and r enbveScri pt. An
auto part must have an install script.

Building a Project 4-49

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-50

CHAPTER 4

Managing and Building a Project

Parts in Auto-Remove Packages

You can activate Auto Remove Package in Package Settings to specify that
parts in the package are to be removed automatically immediately after
installation.

When it encounters an auto-remove package, the Newton system software
executes the install script for each part in the package and then removes the
software, without executing a remove script or a deletion script. The only
recommended constituent of an auto-remove package is a single auto part.

Store Parts

A store part holds a read-only store containing one or more soups.You create
store parts from one or more text files plus any other files you've used to
store the data. A store part is not a frames part; it has no slots for install and
remove scripts, a part name, or an application symbol. A store part is of type
soup.

When building a store part, NTK creates a global variable named t heSt or e,
which contains a store. Code that executes during the build can write data to
the store; at the end of the build, NTK creates a part of type soup that
contains all data written to the store during the build.

For more information about creating and using store parts, see Newton
Programmer’s Guide.

Stream Files

A stream file holds a hierarchy of NewtonScript frames in Newton Streamed
Object Format (NSOF).

You can use stream files to incorporate into a project code or data that’s
already been processed. You could place a large data structure into a stream
file, for example, and then incorporate it into a new project without
rebuilding the structure every time you build the project.

NTK builds a stream file essentially the same way it builds any other kind of
project: it processes the source files in order and places the results in a new

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

file. You can then place that file in the project, where it will be processed in
order during the build.

When it encounters a stream file during the build, NTK does two things:

= Itlooks for ani nstal | slotin the frame at the top of the hierarchy, and if
it finds one, sends the i nst al | message to the frame. This allows your
stream file to define its own global functions or other objects.

= It creates a constant named st r eanFi | e_filename, which references the
contents of the stream file. You can then use this constant to incorporate
the contents of the stream file into your software.

The NSOF specification is available under some restrictions from Apple—to
request the specification, send mail to tools@newton.apple.com.

When you choose Stream File in Output Settings, NTK displays a Result
field. You must enter in the Result field an expression—typically a global
variable—that evaluates to the top-level frame of the output file.

Custom Parts

You can use NTK to create parts of any type, including dictionary parts and
font parts, by choosing Custom Part in Output Settings and entering a
four-character type code in the type field.

When it builds an application, a book, or an auto part, NTK builds a part
frame with the slots appropriate for a part of that type. When it builds a
custom part, NTK makes no assumptions about what slots to add to the
output frame. When you're assembling a custom part, you must build your
own part frame.

When you choose Custom part in Output Settings, NTK displays a Result
field, as illustrated in Figure 4-14. You must enter in the Result field an
expression—typically a global variable—that evaluates to the top-level frame
of the output.

Building a Project 4-51

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

Figure 4-14 Custom part settings

4-52

Reszult

ryP artFrame]

Build Sequences

This section summarizes the guidelines for ordering files in the project
window and describes how NTK processes a layout file.

Building a Project

NTK processes the files in a project in the sequence you establish through the
project window. NTK requires that you group files by type, in this order:

= bitmap or sound files

= package files

= text files, layout files, and object stream files
= package files

When it can identify the file types, NTK enforces the order as you add or
rearrange files through the project window.

To reorder files in the project, select one file at a time and

» choose Process Earlier from the Project menu or press Ctrl-Up Arrow to
move that file closer to the beginning of the build or

s choose Process Later or from the Project menu or press or Ctrl-Down
Arrow to move it closer to the end of the build.

NTK builds one new part out of the text and layout files in the project. If you
include package files in the project, NTK places them before or after the new
part, depending on where you placed them in the project.

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

The next section, “Processing a Template,” describes how NTK processes
layout files. “Stream Files” beginning on page 4-50 describes how NTK
processes stream files.

Processing a Template

When NTK processes a layout file, it starts by processing the template for the
layout view, the parent of all other templates in the file. In the course of
processing a template, NTK processes all of its children. Therefore, the
processing of a layout file begins and ends with the layout view, which is the
first template in a file whose processing is started and the last template
whose processing is completed.

After it finishes processing the template for the layout view, NTK creates the
constant | ayout _filename, which contains a reference to the view hierarchy
defined by that file.

NTK processes each template in a layout in four steps:

1. NTK looks for a _pr ot 0 or vi ewd ass slot. If the template is based on an
unprocessed user proto, NTK displays an alert and halts the build.

2. NTK compiles and executes the code in the bef or eScri pt slot, if it's
present.

Memory objects created in the before script are available to evaluate slots
in the template and its descendants.

The bef or eScri pt slot exists only during the processing of the current
template; the bef or eScri pt slot does not appear in the frame that
results from the processing of a template.

The bef or eScri pt and af t er Scri pt slots let you execute code specific
to a template during the build. You can use the bef or eScri pt slot to
define functions and data that will be available during the processing of a
single template, the same way you use text files to define functions and
data that will be available during the rest of the build.

3. NTK builds the template:
o NTK creates the template and adds the _pr ot 0 or vi ewd ass slot.

o NTK creates the slots altered or added through the browser.

Building a Project 4-53

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

4-54

CHAPTER 4

Managing and Building a Project

As it creates each slot, NTK establishes the slot’s value. When it creates
an evaluate or script slot, NTK compiles and executes any
NewtonScript code in the slot.

o NTK creates the st epChi | dr en slot (described in the “Views” chapter
of the book Newton Programmer’s Guide).

o NTK processes the template’s children, adding each child to the
st epChi | dr en array as it’s created.

4. NTK compiles and executes the code in the af t er Scri pt slot, if it's
present.
The template is available to the after script through the variable
t hi sVi ew which is a reference to the view template. You can use
t hi sVi ewto add slots or change the value of existing slots. This code in
anaf ter Scri pt slot, for example, would conditionally add an extra slot
named debugl nf 0 and place data in it:

i f kDebugOn then thisView debugl nfo : = datato be saved;

This code creates the extra slot only when Compile for Debugging is
enabled. “Embedding Debugging Information” beginning on page 4-44
documents the Compile for Debugging option.

Warning

The t hi sVi ewvariable gives your after script access to any

slot in a view. Use it carefully. a

The code in the af t er Scri pt slot is not part of the final application.

You can create bef or eScri pt and af t er Scri pt slots for any view
through the New Slot item in the Browser menu, documented in “Adding
Slots” beginning on page 5-18. Create the slots as evaluate slots with the
names bef oreScri pt and after Scri pt.

Error Messages

NTK displays its own error messages with explanatory text in the Inspector
window.

Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

When NTK encounters errors in the code its compiling or receives errors
from other sources, it displays an error message with the error number. You
can look up error numbers in the “Errors” appendix in the book Newton
Programmer’s Guide.

If you've installed the Newton application Exception Printer, which is
shipped with NTK, the Newton itself displays more information about errors
that arise during execution.

Building a Project 4-55

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 4

Managing and Building a Project

4-56 Building a Project

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing
Views

You use NTK's graphical editor to lay out your application’s views, and you
use the browser to add the code that defines how the views look and act.
This chapter describes how you use the graphical editor and the browser.

You can adjust some features of the editor and browser through the Toolkit
Preferences menu items, described in “Layout Preferences” on page 4-24 and
“Browser Preferences” on page 4-25.

Laying Out Views

You use NTK’s graphical editor to lay out views in a window that represents
the Newton screen.

Figure 5-1 illustrates the MessagePad layout window and the toolbar of
components, which NTK displays when you choose New Layout from the
File menu or open a layout window. You can open a layout window by

Laying Out Views 5-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

selecting a layout file in the project window and choosing Open Layout from

the Windows menu.

When a project is open, the size of the layout window and the selection of
components on the toolbar depend on the platform you’ve chosen through
the Settings items in the Project menu. If no project is open, the size of the
window depends on the screen size set through the Layout Preferences item
in the Layout menu; the composition of the toolbar depends on the platform

file of the last project that was open.

Figure 5-1 Layout window and toolbar

=) =|mn|or| =]]|] [ciEsitiew =] %[[Na custom Protas

[

View / \

alignment % Layout - Docl ME E Selection

buttons e —] drop list
5-2 Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

\ User-defined
proto drop list

CHAPTER 5

Laying Out and Editing Views

You lay out views by choosing a proto or view class from one of the drop
lists and then drawing a view in the layout window, as described in
“Drawing a View” beginning on page 5-4.

The graphical editor saves the views you lay out in a layout file, which
contains a hierarchy of templates. Each layout file must have a single layout
view, which contains all other views in the layout. The layout view can
contain any number of child views, which themselves can contain any
number of child views, and so on.

The view that opens when a user taps an application’s icon is the application
base view. The application base view—which is the layout view for the
application’s main layout file—is the ancestor of all other views in the
application.

The Selection drop list lets you add these elements:

= view classes, the basic building blocks of view templates
The view class ¢l Par agr aphVi ew for example, is the generic text view,
used for static or editable text. The view classes are built into the Newton.
= system protos constructed from the view classes
The system protos, also built into the Newton, provide ready-to-use
elements like radio buttons and slide controls.
= linked subviews, an NTK device for bringing into the hierarchy views laid
out in separate layout files
You can lay out your application in modules and then link the files
together through linked subviews.

The User proto drop list lets you add user protos, that is, protos you define
yourself. You can base your protos on view classes, system protos, or other
user protos.

The Newton Programmer’s Guide describes the view classes and system protos.
This chapter describes linked subviews in “Linking Multiple Layouts”
beginning on page 5-14.

The view alignment buttons align selected views as illustrated on the buttons.

Laying Out Views 5-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Drawing, Resizing, and Moving Views

You use the mouse and a drop list of templates to add views.

Drawing a View

To add a view to your application, you select the template you want from the
appropriate drop list and then draw out the view in the layout window.

You select a template by choosing an item from one of the two drop lists
found on the toolbar. The Selection drop list contains the view classes and
proto templates built into the Newton ROM. The User proto drop list
contains proto templates you've created and added to the current project.
You activate the selection drop list by clicking the Selection button (the large
button with an arrow on it); you activate the User proto drop list by clicking
the User button (the button with the letter U on it).

Once you've activated a component, move the cursor to the layout window.
To draw a view:

1. Place the tip of the arrow cursor where you want any corner of the view to
appear.

2. Press and hold down the mouse button.

The cursor changes to a crosshair.

3. Hold down the mouse button while you drag the cursor to the opposite
corner.

Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

4. When the view is the size and shape you want, release the mouse button.

The rectangle you've defined on the screen determines the location of the
view as stored in the vi enBounds slot in the frame’s template. You can
anticipate different platforms by adjusting the vi ewBounds slot when a
view is instantiated, as described in the “Views” chapter in Newton
Programmer’s Guide.

Figure 5-2 illustrates a layout window with a layout view and one child view
in place.

Laying Out Views 5-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Figure 5-2 A layout window with the layout view and one child view in place

5-6

Layout - Hello =

The label in the upper-left corner of the view shows the view class or proto
template on which the view is based. After you’ve named a view, its name
appears as well.

Selection marks appear at the drawing corners of the selected view—

prot oLabel | nput Li ne in Figure 5-2. The selected view is the target of
whatever view-editing instructions you make through the mouse or
keyboard. You select a view by clicking on it. To select multiple views, hold
down the Ctrl key while clicking in the layout window.

Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Resizing a View

You can resize a view with either the mouse or the keyboard.
To resize a view with the mouse:
1. Select the view.

2. Place the cursor on the bottom-right corner of the view. When the cursor is
placed for resizing, it changes to a two-headed arrow.

-------------- resize cursor

3. Press and hold down the mouse button while you drag the corner.
4. When the view is the size and shape you want, release the mouse button.

You can select and resize multiple views at once. If you simply resize
multiple views with the resize cursor, NTK resizes the views proportionally,
so that the selected views retain their relative sizes. If you hold down the Ctrl
key while resizing multiple views, NTK resizes all the views by the same
absolute amount, that is, the same number of pixels.

To resize a view with the keyboard:
1. Select the view.

2. Hold down the Ctrl key while pressing one of the arrow keys.

The Right-arrow key enlarges the view by moving the right edge one pixel
to the right. The Left-arrow key shrinks the view by moving the right edge
one pixel to the left. The Down-arrow enlarges the view by moving the
bottom edge one pixel down. The Up-arrow shrinks the view by moving
the bottom edge one pixel up.

To change the size of a view by five pixels at a time, hold down both the
Shift key and the Ctrl key while pressing an arrow key. You can set the
numbers of pixels views are resized by an arrow key alone and by
Shift-Arrow key through the Toolkit Preferences item in the Edit menu,
described on page 4-19.

Laying Out Views 5-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-8

CHAPTER 5

Laying Out and Editing Views

Moving a View

To move a view with the mouse:

1. Place the cursor anywhere on the view (except the bottom-right corner)
and press the mouse button.

The cursor changes to the shape seen below.

move cursor

2. Hold the mouse button while you drag the view, and release the button
when the view is in the position you want.

If you press and hold the Shift key while moving a view, NTK constrains the
movement to either the vertical or the horizontal axis, depending on which
direction you move in first.

To move a view with the keyboard:
1. Select the view.

2. Press any of the arrow keys.

The arrow keys move the view one pixel in the direction of the arrow. You
can move the view five pixels at a time by holding down the Shift key
while you press the arrow key.

You can set the number of pixels a view is moved by the arrow key alone
and by Shift-Arrow key through the Toolkit Preferences item in the Edit
menu, described on page 4-24.

You can select and move multiple views at once.

Aligning Views

You can align the sides or centers of two or more views by selecting the
views and clicking one of the alignment buttons on the toolbar.

== = =
=.=.|=.=|""[I||]uulllll[ll.§.|

Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

You can perform more sophisticated alignments through the Alignment and
Align items in the Layout menu. Choosing Alignment displays the dialog
box illustrated in Figure 5-3.

Figure 5-3 The Alignment dialog box

Alignment

™ Digtribute

- e

AE=je]
O £ [Eenter
£ Bottom
£ Heiahit
™ Align [T Distribute
= [Leff € Eerter £ Bight £ it

As you select various alignment options, the objects in the sample rectangle
move to show the effect. Once you’ve set up your alignment rules through
the Alignment dialog box, click Apply to apply them to the selected views.
You can later choose Align from the Layout menu to apply the current
alignment rules to the selected views.

Often it’s more appropriate to handle alignment programmatically through
the parent- and sibling-relative options of the view system.

Vertical Spacing

The options to the right of the sample rectangle control vertical spacing. You
can either align or distribute selected views during one alignment.

Laying Out Views 5-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-10

CHAPTER 5

Laying Out and Editing Views

You can align the tops, centers, or bottoms of selected views. When aligning
tops and bottoms, NTK aligns all selected views to the top of the topmost
view or the bottom of the bottommost view. When aligning centers, NTK
centers all views over the line halfway between the top of the topmost view
and the bottom of the bottommost view.

You can distribute the selected views so that the tops, centers, or bottoms are
evenly spaced, or so that the distance is the same between the tops and
bottoms of adjacent views.

Horizontal Spacing

The options below the sample rectangle control the horizontal spacing. You
can either align or distribute selected views during one alignment.

You can align the left sides, centers, or right sides of selected views. When
aligning left and right sides, NTK aligns all views with the view furthest to
the left or right, respectively. When aligning centers, NTK centers all views
over the line halfway between the outer sides of the most distant views.

You can distribute the selected view so that the left sides, centers, or right
sides are evenly spaced, or so that the distance between the edges of adjacent
views is the same.

Ordering Views

Views are drawn on the Newton screen in the order in which they appear in
the drawing list. Views that appear later in the list can obscure views drawn
earlier.

Within each sibling group, views are added to the drawing list in the order
you lay them out in NTK’s graphical editor. You can move a view one place
ahead in the drawing list by selecting it and choosing Move Backward from
the Layout menu. You can move a view one place back in the drawing list by
choosing Move Forward. You can move a view behind all its siblings in the
drawing list by choosing Move To Front, and you can move a view ahead of
its siblings in the drawing list by choosing Move To Back.

Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

You can also reorder views by selecting them in the browser template list and
pressing Ctrl-Up arrow (to move a view forward in the drawing list) or
Ctrl-Down arrow (to move a view back in the drawing list).

Previewing

You ordinarily draw views with the graphical editor in layout mode, in
which NTK displays the rectangular extents of the views and their names.
You can see a closer approximation of how the views will look on the
Newton screen by choosing Preview from the Layout menu.

Figure 5-4 illustrates a simple view in layout mode and preview mode.

Laying Out Views 5-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Figure 5-4 The layout window in layout and preview modes
layout mode preview mode
Layout - Hello =] % Layout - Hello M= E3
helloBuase <protoppr ' [Zzioatcn]
.p.rc-;ol._a.bellll.'up.ut;_il.'uei |

floaterLink <linkedSubwiem= lshowFIoated flaaterlink <linked S ubwiems| g Linked W
Declared in helloBase =~ | —
Linked to "floathdeg™ | Linked to "floathdzg"

Views based on the most commonly used protos appear in preview mode
much like they’ll appear on the Newton screen. Text is displayed only in the
default font, and a pr ot oSt at i cText view can display no more than 255
characters. User protos are not displayed.

You can toggle between layout and preview modes by choosing Preview
from the Layout menu or pressing Ctrl-Y.

Preview mode is fully implemented for the templates pr ot 0App,
pr ot oCheckBox, pr ot oLabel | nput Li ne, pr ot oRadi oBut t on,

5-12 Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

protoStati cText, prot oText Button, prot oPi ctureButton,
prot oSl i der, cl GaugeVi ew and pr ot oRadi oCl uster.

Naming and Declaring Views

You name and declare views through the Template Info item in the Browser
menu.

You must supply unique names for
= views that declare themselves to other views and
= views to which other views declare themselves.

You should also name all views that you’ll need to identify through the
browser template list. You don’t need to name all views—NTK identifies
unnamed views with a label based on the name of the view’s proto.

When you choose Template Info, NTK displays the dialog box illustrated in
Figure 5-5.

Figure 5-5 The Template Info dialog box, for naming and declaring views
Template Info
Hame: I
7| Declare Do I j

ar. I Caticel |

You name a view by typing into the Name field. You activate the Declare To
drop list by clicking its check box. Click the mouse button with the cursor on
the menu to see a list of the view’s named ancestors. Declare a view only to
its immediate parent.

Laying Out Views 5-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-14

CHAPTER 5

Laying Out and Editing Views

You must name a view before you can declare it. Declaring a view places a
slot for that view into the template in which you are declaring it, allowing
symbolic access from the parent to the child. The “Views” chapter in Newton
Programmer’s Guide: System Software contains a more complete discussion of
declaring views.

Linking Multiple Layouts

You can work on an application in separate layout files, each with its own
local main view. You link layout files with the special-purpose linked
subview element.

To link an external file to an application:

1. In either the main layout file or a layout file that’s linked to the main
layout file, lay out a small reference view, using the | i nkedSubvi ewitem
in the Selection drop list.

2. Link the linked subview to the external layout file by choosing Link
Layout from the File menu.

The section “Adding a Linked Layout” beginning on page 3-16 illustrates
how to link a separate layout file into an application.

If you make a link to a file that’s not already in the project, NTK
automatically adds the file to the project. If you remove a linked file from a
project (with the Remove File item in the Project menu), you also remove the
information about links to that file. The external file must appear in the
project list before the file that references it.

The linked subview is a placeholder in the parent view. When the parent
template is processed, the templates in the linked layout file replace the
linked subview template. The name of the linked subview, however, replaces
the name of the layout view in the linked file.

To declare a view in the linked layout file to an ancestor in the other file, you
must declare the placeholder view (the linked subview) in its parent file.
Child views in the linked layout file then declare themselves to the layout

Laying Out Views

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

view in the linked layout file; they send messages up the hierarchy by

referencing the placeholder view.

For example, consider a placeholder view with the name bi r ds, in the
baseVi ewtemplate in the main layout file. The layout view in the linked

layout file is named bees, and it has a child named eggs, as illustrated in

Figure 5-6.

Figure 5-6 Declaring views across linked layout files

Linked Layout File

Main Layout File

bees

declare to

baseview

birds |

declare to

<_linked

Laying Out Views

to
K

The compiler processes
the Linked and Main layout
files and produces. . .

U

Application Templates

baseView

declared to

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-15

CHAPTER 5

Laying Out and Editing Views

In this example, the view bi r ds declares itself to baseVi ew and the view
eggs declares itself to bees. To send a message to its parent, the view eggs
sends the message to bi r ds. To send a message to eggs, baseVi ewsends
the message to bi r ds. eggs.

If you assign the same name to the placeholder view and the main layout
view in the linked layout file, you don’t need to remember which name to
reference.

Creating User Protos

You can use the New Proto Template item in the File menu to start your own
proto layout. You save the layout in a separate file and add it to the project
through the Project menu.

Once you’ve added your proto to the project, you can lay out views based on
it by choosing it from the User proto drop list on the toolbar.

The tutorial section “Defining Your Own Proto” beginning on page 3-23
illustrates how to define and use your own proto template.

Browsing and Editing Templates

5-16

You use the NTK browser and slot editors to program your templates.

Browsing Templates

A browser window lets you examine the templates in a local view hierarchy
and the slots within each template.

You open a browser window by opening a saved layout file or by selecting a
view in a layout window and choosing New Browser from the Window
menu. You can examine and edit slots in the template for the selected view or
any of its descendants. If you want access to all of the templates in a layout
file, choose New Browser with no view selected, with the layout view

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

selected, or with the layout file selected in the project window. You can keep

several browser windows open at once.

Figure 5-7 illustrates a browser window with the vi ewFl ags slot open for

editing.

Figure 5-7

Template list

Movable
boundaries

Slot drop
list

Slot-name
buttons

rowser - Hello: protoLabellnputLine_viewFlags

helloBase <protoApp>
protol abellnputlLine

A browser window with the view flags slot open for editing

— Slot list
floaterLink <linkedSubview?> |viewBounds
showFloaterButton <protoTex |IaNEETIE
7 Revert
Specific | Methods | Attributes | v’l)(I - button
— Entry Flags L Apply
v
o : _ button
[whpplication Field Type: IN':'”E j
[vCalculateBounds [T wSinglel nit ™ vCharsallowed
™ vReadOnly W wClickable ™ wletterstillowed
_ Editin
I™ vClipping [T wShrokesallowed I vt athtllowed area 9
I vFloating [vGesturestlowed ™ whurnberstliowed
™ wwiiteProtected ™ vShapeshllowed
™ wMoScripts

The template list in the top-left corner lists the templates in the view

[T wPunctuationdllowed
[whnyThingslowed

I wCustomDictionaries

™ wCapsFequired

hierarchy. The slot list to the right lists the slots in the selected template.
Highlighting around either the template list or the slot list shows which is
active; you can change the selection in the active window by pressing the Up
arrow and Down arrow keys.

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-17

5-18

CHAPTER 5

Laying Out and Editing Views

You open a slot for editing by clicking its name in the slot list. The browser
then displays the slot’s contents in the editing area in the lower part of the
window. If you’ve changed the template selection since opening a slot,
clicking on the slot-name button in the editing area restores the template and
slot selections.

You can resize the three panes of the window by moving the boundaries
with the mouse. You can customize the amount of information displayed and
the text styles used in the template and slot lists through Browser
Preferences, described in “Browser Preferences” beginning on page 4-25.

NTK provides different editors for different kinds of slots. Figure 5-7, for
example, illustrates the view flags slot editor. “Editing Slots” beginning on
page 5-20 describes the basic slot editors; Appendix E, “Slot Editors,” lists the
specialized slot editors

The Apply and Revert buttons allow you to apply or cancel any editing
you've done to a slot since the last revert or apply. When you click Apply (or
press Ctrl-E or choose Apply from the Browser menu), NTK places any
outstanding changes into the slot. When it applies a change, NTK checks for
syntax errors in NewtonScript code. It reports errors in the Inspector
window but applies the changes in any case. NTK automatically applies
changes to a slot when you

= open a different slot for editing
s close the browser window
= save the file in which the slot is stored

= build a package.

Adding Slots

You can add any of the slots defined by the Newton system software through
the three slot pop-up menus:

» Specific—lists the proto-specific slots in the proto template on which the
selected template is based

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

= Methods—lists the system-defined methods, that is, the code that executes
when a view receives one of the system messages

s Attributes—lists attributes, that is, the view characteristics the Newton
system software uses when displaying and manipulating views.

You add your own slots to a template through the dialog box illustrated in
Figure 5-8, which NTK displays when you choose New Slot from the
Browser menu.

Figure 5-8 The New Slot dialog box

& MNewSlt
|pmt ohpp I:mglate
or label
| Specific I | Methods I | Attributes I
Slot Mame: I Editor: IEvaIuale IEI
Slot
— [description
field
sdd || Done |

The name centered at the top of the window’s content area (pr ot 0App in
this example) is the name of the template you're adding slots to or—if the
template isn't named—a label based on the name of the template’s proto or
view class. You can add any of the system-defined slots through the proto
pop-up menus, and you can add your own slot by typing the slot name into
the Slot Name field.

Whenever the Slot Name field contains the name of a system-defined slot,
the description field contains a brief description of the slot.

Browsing and Editing Templates 5-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

When you're defining your own slots, you specify a slot type—which implies
a slot editor—through the Editor drop list, illustrated in Figure 5-9. The slot
types are documented in the following section.

Figure 5-9 The Editor drop listin the New Slot dialog box

5-20

I Evaluate i I

When you’ve established a slot name and editor, click Add. To dismiss the
dialog box, click Done.

Editing Slots

You use the basic slot editors listed in this section to edit slots of the types
available through the New Slot dialog box. NTK also supplies specialized
editors for editing various system-defined slots, listed in Appendix D, “Slot
Editors.”

An evaluate slot is a slot that’s evaluated in place, that is, during the build
when the code is compiled. You use evaluate slots to embed data that’s
available only during the project build into the templates that will be used on
the Newton device. The value of the slot is set to the value returned by the
last statement executed.

A script slot holds a function definition that’s compiled during the build for
execution at run time. NTK processes evaluate and script slots in exactly the
same way: During the build, NTK first compiles the contents of the slot, then
executes the resulting code with the NewtonScript interpreter, and finally
sets the value of the slot to the value returned by the last statement executed.

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

The result for an evaluate slot is a value. The result for a script slot is a
function.

A text slot holds text. During the build, NTK places the specified text in a
text string in the text slot.

Figure 5-9 illustrates the initial displays for evaluate, script, and text slots.

Figure 5-10 Initial contents of evaluate, script, and text slots
B]
ni g Text
=2
Evaluate slot Script slot Text slot

You edit evaluate, script, and text slots with the text editor described in
“Editing Text” beginning on page 5-23.

If you delete the keywords f unc(), begi n, and end from a script slot, it

becomes equivalent to an evaluate slot; conversely, if you place a function in

an evaluate slot, it's equivalent to a script slot.

Number, Boolean, rectangle, and picture slots use editors tailored to their
data. Figure 5-9 illustrates the initial display for these four slot types.

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-21

CHAPTER 5

Laying Out and Editing Views

Figure 5-11 The number, Boolean, rectangle, and picture slot editors

5-22

Number slot ——
Mumber: IEI

Boolean

Boolean slot—— ’7) True = il

Left: ID Right: ID Wfidth: 0
Top: IU Battom: IU Height: 0

Rectangle slot—

File: ([N I Include Maszkl

wiidth: Height:

Picture slot

Mo image selected

A number slot can hold either an integer or a real number. If you enter an
integer in the range —536,870,912 to 536,870,911, NTK stores it as type

i nt eger. If you enter an integer outside that range or a number containing a
decimal point, NTK stores it as type r eal .

A Boolean slot can hold only the valuet rue orni | .

The rectangle slot holds four integers. NTK automatically calculates the
width and height based on the integers you supply. In your own rectangle

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

slots, you can use the four integers however you want. In a vi ewBounds
slot, the meanings of the four values depend on the value of the template’s
vi ewdust i fy slot, as documented in Appendix D, “Slot Editors.”

A picture slot holds a 'BMP' file. You use the picture slot editor to specify a
bitmap. The File drop list displays all bitmap files in the project. The selected
picture appears in the rectangle to the right of the resource list. NTK displays
the width and height in pixels.

A picture’s mask is a parallel ' BMP' file that’s used to display the image
when it’s selected. To supply your own mask, place it as a bitmap file in the
project, with a trailing exclamation point on the file name and check Include
Mask!. If the file is named wave, for example, the mask takes the name
wave! . If you don’t supply your own mask, NTK generates a simple one
automatically from the original.

Editing Text

You edit text in slots and text files with a text editor that follows the basic
user interface conventions:

= The blinking cursor marks the current insertion point, that is, the place
where keystrokes are inserted. You change the insertion point by moving
the cursor with the mouse and clicking at the new insertion point.

= You select text by holding down the mouse button and dragging the
cursor through the text to be selected. Double-clicking selects the word in
which the cursor appears. Triple-clicking selects an entire line.

= The Cut, Copy, and Paste items in the Edit menu (and their keyboard
equivalents: Ctrl-X, Ctrl-C, and Ctrl-V) delete selected text from the slot
and place it on the clipboard, copy the selected text to the clipboard
without deleting it, and paste the contents of the clipboard, respectively.

= Keystrokes replace selected text.

You can also navigate, select, and manipulate text with the arrow keys and
keystroke combinations listed in Appendix A, “Keyboard Text-Editing
Commands.”

Browsing and Editing Templates 5-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

As a help mechanism, NTK supplies argument information when you're
entering global functions and common messages. When you type a left
parenthesis after a token that’s listed in the editor’s internal database, NTK
displays a help line in the status bar at the bottom of the NTK window. To
see the arguments for the set Val ue function, for example, type

set Val ue(

The help message appears in a box in the status bar at the bottom of the NTK
window, in either a browser or the Inspector window, as illustrated in
Figure 5-12.

Figure 5-12 The Inspector window with a help message displayed

= 'vl e
B &1 E
setvalue |
«[] +
Help message —— || setvalue(view.slotSymbalvalug) / run time

5-24

The search and display are triggered by the typing of the parenthesis, not by
the position of the cursor.

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Searching for Text in Files

The Edit menu contains a number of items that let you search for strings in
various situations.

Searching Template Files

The Search item identifies all instances of a string in a template file or in all
template files in a project. You specify the string and the search criteria
through the dialog box illustrated in Figure 5-13.

Figure 5-13 The Search dialog box

Search

Eind What: |
" | apout: Hello Caticel |

Search in:

% Project: Hello
' Frame 'With Name ™ Match Whale Word Ornly
€ Slat With Name ™ Match Casze
% Textin Slat
Al

Select one of the radio buttons at the top of the window to specify the files to
be searched.
In Layout (Ctrl-L)

Searches only the layout file associated with the active
layout or browser window.

In Project (Ctrl-P)
Searches all layout and text files in the open project.

Browsing and Editing Templates 5-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Select one of the four radio buttons below the string field to specify the target
of the search.

Frame With Name (Ctrl-F)
Searches layout files for frames whose name contains
the specified string.

Slot With Name (Ctrl-S)
Searches layout files for slots whose name contains the
specified string.

Text In Slot (Ctrl-T)
Searches layout and text files for slots whose value
contains the specified string.

All (Ctrl-A) Searches layout and text files for the specified string in
frame names, slot names, or slot values.

You can limit the search by checking one or both of the boxes:
Whole Word (Ctrl-W)
Finds only instances in which the specified string
appears as a word, that is, in which the specified string
is not embedded within other text.
Case Sensitive (Ctrl-E)
Finds only strings that match the capitalization of the
specified string.
When you click Search, NTK finds and lists all occurrences of the specified
string. You can double-click any of the entries to open or activate a browser
window with that entry selected. If NTK finds no instances of the string, it
sounds the system beep.

Searching the Active Window

The Find and Find Next items search through text in the active window to
find and select a specified string.

Find displays a dialog box, illustrated in Figure 5-14, in which you specify
the string and search specifications.

5-26 Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

Figure 5-14 The dialog for searching with Find

Find |

Findwhat |
Cancel I

™ Match Whale word Only
™ Match Case

The Whole Word option finds only instances in which the specified string
appears as a word, that is, in which the specified string is not embedded
within other text. The Case Sensitive option finds only strings that match the
capitalization of the specified string. You can toggle the checkboxes by
pressing Alt-W and Alt-C on the keyboard for Whole Word and Case
Sensitive, respectively.

When you click Find, NTK finds and selects the next occurrence of the
specified string. If NTK finds no instances of the string, it sounds the system
beep.

The Find Next item finds the next occurrence of the string last found through
Find.

The Find and Find Next items are available when you're working in the
Inspector window and when you're editing a text file or a slot that contains
text.

Finding Views in a Layout File

The Find Inherited item finds and selects in the layout file the view that
contains a slot with the same name as the slot selected in the browser slot list.

The Find Inherited command looks first in the parent of the selected
template. If it doesn’t find the selected slot there, it continues up the parent
hierarchy to the top level. When it finds a slot with the same name as the

Browsing and Editing Templates 5-27

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

5-28

CHAPTER 5

Laying Out and Editing Views

selected slot, NTK opens another browser window, with the slot and its
template selected. If it doesn’t find the slot in any template in the hierarchy,
NTK sounds the system beep.

Adding Non-View Objects

Although most Newton objects are views, you occasionally need a non-view
object, like the format frame required for beaming frame data.

To create a non-view object that you can edit in the browser, place a simple
view—such as a static text view—in a separate layout file. You can remove
the unneeded slots—the vi ewBounds and t ext slots in the case of a static
text view—by selecting and deleting them in the browser. You can add an
after Scri pt slot that redefines the _pr ot o slot (or removes the _pr ot o
slot and replaces it with a vi ewd ass slot, if that’s what you need).

This af t er Scri pt slot, for example, redefines the _pr ot o slot to a format
frame:
thisView. _proto := protoFraneFor nat

To remove frames in an af t er Scri pt slot, use the RenmoveS! ot function,
documented in Newton Programmer’s Guide: System Software.

Add the layout file to your project. You can access the processed templates
with the Get Layout function, which is described in “GetLayout” beginning
on page 4-39.

To create a non-view object without the browser, you can type the frame into
a text file.

Customizing the Text Editor

You can install your own keystroke definitions to the NTK text editor by
adding them to the array pr ot oEdi t or . keys through your global data file,
which is described in “Global Data File” on page 4-29.

Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

The following line in your global data file, for example, causes selected code
to be evaluated when you press the period key on the numeric keypad.

prot oEdi t or: Defi neKey({key: 65}, 'Eval uateSelection);
The Eval uat eSel ect i on method is built into the editor.

The following example defines a function upcaseSel ect i on, which
converts selected text to upper-case text, and ties the function to the key
combination Ctrl-U.

pr ot oEdi t or. upcaseSel ection := func(off, |en)
begin
: Repl aceSel ecti on(Upcase(: Sel ection()));
end;
pr ot oEdi t or: Defi neKey({key: $u, option: true},
'upcaseSel ection);

Browsing and Editing Templates 5-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 5

Laying Out and Editing Views

5-30 Browsing and Editing Templates

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTETR 6

Debugging

This chapter explains how you can use NTK to debug software running on
the Newton. This chapter describes

= the Inspector, a debugging window that lets you examine the Newton
from the development system

= a collection of debugging functions you can issue interactively or embed
in software under development

= afew common NewtonScript programming problems

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products. a

The file NS Debug Tools.pkg, which is shipped with NTK, contains a
collection of debugging functions that let you examine the execution
environment in more detail. For a further discussion of debugging, see
Chapter 7, “Extended Debugging Functions.”

NTK is also shipped with a collection of special-purpose debugging tools
that you can install on the Newton. These tools are listed in Appendix E,
“Newton Debugging Applications.”

6-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Compatibility

This chapter describes the debugging functions that are built into the
Newton ROM and available through NTK. All but two of these functions are
available on both the MessagePad and Newton 2.0 platforms.

This chapter describes the stack trace display on a Newton 2.0 PDA. The
current function in a stack trace on a Newton MessagePad is at stack level 2.

The Get Sel f Frontt ack and Get Local FronSt ack functions described in
this chapter are available only on the MessagePad platform. To examine the
execution environment on a Newton 2.0 device, you must use the functions
described in Chapter 7, “Extended Debugging Functions.”

The Inspector

The Inspector is a debugging window that lets you browse the Newton
object storage system and execute NewtonScript code on the Newton. You
make an Inspector connection through the Toolkit application running on a
Newton attached to the development system by a serial cable, as described in
Chapter 1, “Installation and Setup.”

You communicate with the Newton through the Inspector window,
illustrated (with an open connection) in Figure 6-1.

6-2 The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Figure 6-1 Inspector window

(s a
|nspect0r ITET = =
controls | EE==]=] B

e dabugi"flostecLink™)

#949004941 | _pmcsnk: 4Ix,
_peokn: J{wiswBounda: |WSO00?F7801.
stmpChildeen: [stspChildcan:
' #E007FB011] .
_pegkm: | _pcoto: 1RL791,
_ Y wimpwChildeen: [E3ICCIAD],
Te)ét edltlng] debug: 3430817,
and results prekllpcetedContext: flomtmclink],
area vimgTOhieckt: O<110A40A8,
haam: £1>,
vimeFlegs: 9771,
:llw.l.u.lj L
k.|
*
~ =
Help field || bl i m bt bl mbye] e

You use the buttons along the top of the Inspector window to open and close
the connection with the Newton and to control the debugging environment,
as described in “Using the Inspector” beginning on page 6-5.

You edit text in the Inspector window with the editor described in “Editing
Text” beginning on page 5-23 and in Appendix A, “Keyboard Text-Editing
Commands.”

The help field displays the parameters and return values of common
functions and messages when you type a left parenthesis after a function or
message name, as illustrated in Figure 6-1.

You execute code you've typed in the Inspector window by selecting the text
and pressing Enter in the numeric keypad, or by pressing Ctrl-Enter on the
keyboard. If you press Enter with no text selected, the Newton executes the
current line.

The Inspector 6-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

NOTE

Pressing the Return key does not trigger an evaluation of
text. O

After the Newton executes the selected code, the Inspector window displays
the results of the last statement executed.

The Inspector window gives you access to the NewtonScript interpreter and
the object store on the Newton. You can execute any valid NewtonScript
code in the Inspector window, and you can examine the Newton with the
functions described in this chapter.

The Inspector window also displays warnings and error messages that arise
during execution, during a build, or when you apply changes in the browser.

You can save the contents of the Inspector window through the File menu,
and you can open the Inspector window without connecting to the Newton
by choosing Open Inspector from the Windows menu.

You can use the Inspector to study your program while it’s executing and to
test out proposed changes. You can then make changes in the source code,
rebuild the package, and download the new version. Figure 6-2 illustrates
the debugging cycle.

Figure 6-2 The debugging cycle

Create
source code

| L

JL

Build and Change
download source files in
browser

| L
i3t Q
Study app

while it executes
on the Newton

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Using the Inspector

You can use an Inspector connection to

= examine and edit views and other objects

= trace the flow of execution

= collect performance statistics.

= study memory use

= examine your application’s drawing efficiency

You interact with the Newton device by entering commands in the
text-editing area and manipulating the Inspector controls, which are
illustrated in Figure 6-3 and described in the following subsections.

Figure 6-3 Inspector controls

E=1=E R

Connect/Disconnect | Settrace |Exit break loop
to nil

Stop on throws ~ Stack trace Set printDepth

The Print Depth drop list—to the right of the Inspector buttons—determines
how many levels of the frame hierarchy are displayed in the Inspector
window when you enter a command that displays frames. The Print Depth
drop list sets the value of the pr i nt Dept h variable, which is described in
Table 6-1 on page 6-21.

Making an Inspector Connection

You initiate an Inspector connection by clicking the Connect button or
choosing Connect Inspector in the Windows menu. The Newton must be

The Inspector 6-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

attached to the development system by a serial cable, as described in Chapter
1, “Installation and Setup.”

You complete the connection from the Newton side by opening the Toolkit
application and tapping Connect Inspector.

When you're typing into the Inspector window, you're communicating
directly with the Newton, at what's referred to as the top level. You can
create objects and define global variables, which you can access by simply
typing their names. Suppose, for example, you enter this text:

seaFrane : = {nanme: "Pacific",
col or: "blue",
size: "large"};

You can then display the frame by entering its name:

seafFr ane;

The Inspector processes the statement and displays the results in two ways: a
transient reference (a hexadecimal number preceded by a pound sign) and a
textual representation:

#440B9C9 {nane: "Pacific",
color: "blue",
size: "large"}

Applications that you build on the development system and download to the
Newton are declared in the root view under their application symbol—
there’s a slot in the root view whose name is the application symbol and
whose value is the application base view. To reach objects defined in an
application, you must find them within the hierarchy. To see whether an
application with the signature hel | o: TUT is open, for example, you could
test the vi ewCObj ect slot with this statement:

cal | kView sOpenFunc with (GetRoot().|hello: TUT|);

The rest of this chapter describes a number of functions that let you examine
objects on the Newton device through an Inspector connection.

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

WARNING

The functions described in the rest of this chapter are for
debugging purposes only. Do not include them in released
products. You can place them in your source code
conditionally, as described in “Constants and Variables”
beginning on page 4-34. a

Retrieving Views

In software that has been compiled for debugging, you can use the Debug
function to retrieve a view made from a named template. This statement, for
example, returns the view built from the template named hel | oBase.

Debug(" hel | oBase") ;

The Debug function searches all templates on the Newton looking for a slot
named debug whose value is a string that begins with the specified
characters. When Compile for Debugging is enabled in Project Settings, NTK
automatically creates a debug slot containing the template’s name in any
named template in your project. You can also add a slot named debug to any
frame in your application. NTK does not override the value you assign to a
debug slot you create yourself.

If it finds a match, Debug returns the view and displays a text representation
of it in the Inspector window:

#440E4B1 {_ Parent: {#440ABBl},
_proto: {#600828A1},
vi ewCObj ect: 0Ox110AAB9,
fl oat erLi nk: {#440FCA9},
vi ewBounds: {#440FCF9},
vi ewcl i pper: 17865641,
base: <1>,
vi ewFl ags: 5}.

The values of the pri nt Dept h and pri nt Lengt h variables, described in
Table 6-1 on page 6-21, control how much information the Debug function

The Inspector 6-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

displays. The example here shows the display when pri nt Dept h is set to 0
and printLengthissettonil.

Displaying the View Hierarchy

You can display the hierarchy under a view with the DV function, which
takes a view as its parameter. To display the hierarchy under the view based
on the template named hel | oBase, for example, you would enter:

DV(Debug(" hel | oBase"));

Figure 6-4 illustrates the output.

Figure 6-4 The DV display

hel loBase

| 120244
|z62116

| | 281204

| | 46154304
|93 132404

| 12015956

| | 579920

| showF loaterB
|51 iderHo | der
| | 360445

| |outputl)iem
| |5793920

| floaterlink
| | 1451352

| 5783920

#2 HIL

#4410000 [10, 4,230,320]1 10000005 wWisible vApplication wHasChildrenHint
#4416621 [102, 2,137, 181 40000003 wlisible wReaddnly

#44 16751 [10,302,230, 3201 S0000001 wMisible wHasChildrenHint

#4416769 [14,302, 31,3191 60000201 wisible wClickable vHasldlerHint
#4416341 [Z11,304,224, 3171 40000202 wlisible vwReaddnly wilickable

#44 16861 [18, 52,226, 1401 50000201 uwlisible wllickable wHasChildrenHint
#44168C9 [20, 52,226, 1401 40003A01 wMisible wClickable wiesturesAl lowed wCharsAl lowed wHL
#4416019 [1%, 54, 20, 671 40000202 wlisible vwReaddnly wilickable

#4416BE9 [132, 150,224, 1701 40000203 wlisible wReadOnly wilickable

#4416C01 [34,244,210,316]1 S0000001 wMisible wHasChildrenHint

#44 160090 [50,200, 194, 2761 40000201 wisible wClickable

#4416C19 [170,284, 194, 3001 40000003 wlisible wReadinly

#4416C01 [92,284, 162,300]1 40000003 wMisible wReadlnly

#44 16649 [20, 162,210,222]1 10000041 wMisible wFloating wHasChildrenHint
#4417001 [195,208,209,221] 40000202 wWisible vwReaddnly wilickable

#4417019 [328,178,214, 2181 40000003 wlisible wReaddnly

For the view and each of its children, the DV function displays:

» the name of the view or—if it’s based on a proto template and is not
otherwise named—the name of the view’s proto encoded as an integer

Note

If you install the Newton package DebugHashToNames.pkg,
the Inspector can translate some of the integers to proto
names. O

» an internal reference to the object, prefaced with the pound sign (#)

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

= the view’s bounds (left, top, right, bottom) in global coordinates
» ahexadecimal number that is the value of the vi ewFl ags slot
= alist of the view flags set for the view

The first view listed is the view specified as the parameter to DV. Child views
appear with their own children beneath them, with vertical bars to indicate
each view’s position in the hierarchy.

Like the global function Get Vi ew DV recognizes three special symbols for
the view argument:

= The' vi ewFr ont Most symbol returns the frontmost view on the screen
that has the vAppl i cat i on flag set in its vi ewF| ags slot.

= The' vi ewFr ont Most App symbol returns the frontmost view on the
screen that has the vAppl i cat i on flag set in its vi ew| ags slot, but not
including floating views (those with VFI oat i ng set in their vi ewFl ags
slot).

= The' vi ewFr ont Key symbol returns the view on the screen that
currently accepts keystrokes.

These symbols are evaluated at run time.

Displaying Values in the Inspector Window

You can display the value of objects in the Inspector window with the
Print, Wite, and D spl ay functions, each of which takes an object and
displays its value. You can display a hexadecimal string representation of a
binary object with the St r HexDunp function, described on page 6-25.

The Print, Wite,and Di spl ay functions are similar to each other, but
they follow different display conventions.

The Pri nt function displays an object and adds a newline. It places
quotation marks around strings and places a dollar sign in front of
characters. The Di spl ay function places quotation marks around output
and identifies characters but does not add a newline. The Wi t e function
adds no special marks or newlines.

The Inspector 6-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-10

CHAPTER 6

Debugging

Consider a button whose t ext slot contains the value " Show Pri nt" and
whose but t onCl i ckScri pt slot contains this method:

func()
begi n
Print("Using the Print function");
Print(text);
Print("x");
Print("\n");
Print ($x);
end

When you tap the button with an Inspector connection open, the Inspector
window displays this text:

"Using the Print function”
"Show Print"
"y

$x

Similarly, a button with the t ext slot" Show Di spl ay" and a similar
buttonC i ckScri pt method produces this output:

"Using the Display function""Show D splay""x""

" $x

Finally, a button with a t ext slot containing " Show Wit e" and a similar
but t onC i ckScri pt method produces this output:

Using the Wite functi onShow Wit ex
X

The Pri nt, Di spl ay, and Wi t e functions are useful for debugging, but
they do nothing but waste time and space on a stand-alone Newton device.

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Examining a Binary Object

You can use the St r HexDunp function to retrieve a string that’s the
hexadecimal representation of a binary object. This example displays the
object in the t ext slot in the view named showF| oat er But t on, with a
space after every four bytes of output:

pri nt (St r HexDunp(Debug(" showFl oat erButton").text, 4));

The output is a hexadecimal representation of the text string, with a space
after every four bytes:

" 00530068 006F0077 0020004C 0069006E 006B0065 00640020
00560069 00650077 0000"

The St r HexDunp function is described in the section “StrHexDump” on
page 6-25.

Breaking

You can often examine problems more closely by putting the Newton device
into a break loop, in which execution of the program is suspended and the
Newton accepts input only from the Inspector window. While the Newton is
in a break loop, you can examine the program stack, examine and edit
objects on the Newton, and execute NewtonScript code.

You can set a fixed break point in your application by embedding the
Br eakLoop function in your source code:

I f kDebugOn then BreakLoop();

You can also instruct the Newton device to enter a break loop when an
exception is thrown by clicking Stop on Throws or setting the

br eakOnThr ows variable. When br eakOnThr ows is set to a non-ni |

value, the NewtonScript interpreter reports each exception to the Inspector—
before it searches for a NewtonScript exception handler—and then enters a
break loop. This option allows you to examine the situation before the
exception handlers are invoked.

The Inspector 6-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-12

CHAPTER 6

Debugging

If the Newton encounters another exception or otherwise executes the

Br eakLoop function when it’s already in a break loop, it enters a subsidiary
break loop. The Inspector reports the level of the break loop as the Newton
enters and exits.

To emerge from a break loop, click the Exit Break Loop button or enter the
Exi t Br eakLoop function:

Exi t Br eakLoop() ;

You can raise your own exceptions and define exception handlers to modify
the flow of execution. The NewtonScript Programming Language describes
NewtonScript exception handling.

You can disable breaking for exceptions by setting br eakOnThr ows toni | .

When br eakOnThr ows is ni |, the Inspector reports only exceptions that
aren’t handled.

You can use the extended debugging functions to
» set break points in code that’s already compiled and downloaded

= examine the Newton more thoroughly from a break loop.

Chapter 7, “Extended Debugging Functions,” contains a further discussion
of break loops and a description of the extended debugging functions.

Examining the Program Stack

While the Newton is in a break loop, you can examine the program stack by
clicking the Stack Trace button, which executes the St ackTr ace function.

The Inspector displays a trace, which is a series of run-time stack frames. For
each frame on the stack, the Inspector displays this information:
stack level The number of the stack frame.

function name The name of the receiver. This is generally the name of a
method or of a global function. The value ni | in this
field represents a built-in NewtonScript function
without a name.

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

program counter The value of the NewtonScript program counter within
that function.

Suppose, for example, you're using a method stored in a slot named
i ni t Vect or. You attempt to invoke the initialization routine by calling the
method by the wrong name:

initArray(vector, 25);

The application compiles, but when you execute it on the Newton device, the
application throws an exception. To find out which function is executing
when the exception is raised, you enable Stop on Throws and execute the
application again. This time, when it reaches the exception, the Newton
reports the problem in the Inspector window and enters a break loop.

Undefined nmethod: InitArray
evt.ex.fr.intrp;type.ref.franme
- 48809

Entering break | oop: level 1

You click the Stack Trace button, and the Newton device displays a stack
trace something like this:

Frame 2:functions. BreakLoop -1
Frame 3:buttondickScript O
Frame 4:viewdickScript 10

The most recent record on the stack appears first. The stack trace display
does not show the first two frames (that is, frames 0 and 1), which are created
and used by the Inspector. The stack level for the first record in the display is
therefore 2. The current function—that is, the function that was executing at
the time of the break—is in frame 3. In the example here, the break occured
during execution of the but t onCl i ckScri pt method, which was called by
the vi ewd i ckScri pt method.

You can examine the execution environment more closely with the functions
described in Chapter 7, “Extended Debugging Functions.” If you're using a
Newton MessagePad, you can examine the environment with the

The Inspector 6-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Get Sel f Fr ontSt ack and Get Local Fr ontt ack functions described in this
chapter on page 6-27.

If you've installed the extended debugging functions on the Newton, the
St ackTr ace function produces the display described in “NewtonScript
Stacks” beginning on page 7-6.

Tracing the Flow of Execution

You can instruct the Inspector to report the flow of execution by setting the
value of the t r ace variable.

You can set the t r ace variable to f unct i ons to instruct the Inspector to
trace every function call and message send:

trace := 'functions;

The sending of the Tr ackHi | i t e message, for example, with trace set to
f uncti ons might appear like this:

Sending TrackHilite(18070494) to #440F671
=> TRUE

The number in parentheses after the function name is the argument value to
TrackHi I i t e. The hexadecimal number preceded by the pound sign is a
reference to the view to which the message was sent. The second line (which
starts with =>) is the return value from the Tr ackHi | i t e method.

Depending on the types of the arguments, the trace displays either a
reference to or a textual representation of the value of each. The function
trace of the | ni t Vect or method used in the previous section, for example,
might look like this:

Sendi ng | nitVector (#44124A1, 25) to #44104C1
Cal | i ng Set Lengt h(#44124A1, 25)

=> #44124A1
Calling -(25, 1)
=> 24

Cal l'i ng Randon(0, 100)

6-14 The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

=> 32

Calling set Aref (#44124A1, 0, 32)
=> 32

Cal li ng Random(0, 100)

=> 29

Cal ling set Aref (#44124A1, 1, 29)
=> 29

Cal I i ng Randon(0, 100)
=> 84
Cal l i ng set Aref (#44124A1, 24, 84)
=> 84
=> NL

Setting t r ace to the value t r ue causes the Inspector to report every frame
and variable access.

A full trace generates significantly more output than a function trace. The
trace of the TrackHi | i t e function with t race settot r ue, for example,
looks something like this:

Sendi ng TrackHi lite(18070461) to #440C921
get #44046C9 |/ #477. penSoundEf fects = TRUE
get #440C921. vi ewClbj ect = 17865612
get #440C921. vi ewrl ags = 2563
set #440C921. vi ewFl ags = 33556995
get #440C921 |/ #440C4B9.icon = #6008CE71
get #440C921 / #3027Bl.viewdustify = 2

=> TRUE

With full tracing in effect, execution quickly outstrips the display.

To turn off tracing, click the Trace Off button or, if possible amidst the
scrolling output, sett r ace to ni | . Scrolling may continue for some time, as
the Inspector displays accumulated data.

The Inspector 6-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Examining Memory Use

You can use the St at s function to find out how much free memory is
available in the NewtonScript heap and how big the largest contiguous free
area is. For example:

Stats();
Free: 59716, Largest: 59540

The NewtonScript heap is a reserved part of system memory from which
space for all NewtonScript objects is allocated.

You can execute the GC function immediately before St at s to ensure that all
unallocated space is consolidated before you retrieve the memory statistics.

You can use the Tr ueSi ze function to calculate how much space an
individual object requires in the NewtonScript heap. Tr ueSi ze adds
together the sizes of the object itself and all of the heap objects it points to.

The total does not include read-only objects, such as objects in ROM or in the
package. The total also excludes memory elements that can be automatically
purged when more memory is needed, such as cached objects.

The Tr ueSi ze function reports the total number of objects measured and a
breakdown by object type, as illustrated inFigure 6-5 .

Figure 6-5 A TrueSize display

6-16

truesizelDebugl "=l iderholder" 2, nil3;

1 200
122
=3
o6

objects
frame
Artay
map

[V SN

The three columns list the object type, the total number of objects of that
type, and the total size of the objects. The first entry, Objects, lists the totals.

The Tr ueSi ze function can also list

» some or all individual objects that were included in the calculation or

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

= all objects within the target that point to a specified object.

The Newton memory-management software can’t remove an object as long
as another object contains a reference to it. The listing of objects that
reference an object helps you find obsolete references.

You supply a filter parameter that either suppresses the object listing or
specifies which objects to list. Figure 6-6 illustrates a listing of all objects
measured.

Figure 6-6 A TrueSize display with object list

truesizelDebugi” sl iderHolder" 2, ‘alll;

objects 11 200
frame 7 192
Array 2 32
map 2 56
44 300 frame
26 26 map map
36 g4 Array kids
28 43 frame lowerS| ider
24 24 froame outputlliew
24 24 frame lowerDisplay
24 24 frame countDisplay
24 24 frome kid=s[1]
24 24 frame kids[4]
20 20 map lowerS | ider . map
16 16 Array col lectAverages

The four columns in the object-by-object listing show the size of the object
itself, the size of that object together with the objects it points to, the class of
the object, and its path name.

The paths are not exact path expressions. Frame maps, for example, cannot
normally be referenced from NewtonScript, but they appear in the object list.
Child views—which are listed with ki ds in the path name—are constructed
from the view system, not from the vi ewChi | dr en or st epChi | dr en slots.
The filter parameter can be any of these values:

ni | Displays the summary of objects by type and the frame
in which it collected the data, as illustrated in Figure 6-7.

The Inspector 6-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Figure 6-7 The TrueSize summary and result frame

truesizelDebugi "=l iderhalder” >, nil1;

objects 11 200
frame s 192
Artaoy 2 52
map 2 56

#44141E1 {objects: {count: 11, size: 300},
binary: f{count: O, size: 0O},
frame: {count: 7, size: 192},
Array: {count: 2, size: 52},
string: fcount: O, size: 0O},
sumbal : feount: 0, size: O},
bitmap: {count: O, size: O},
shape: {count: 0, size: 0O},
map: fcount: 2, size: S6},
Feal: {count: 0, =size: 0O},
instructions: {count: O, size: 0O},
capture: MIL,
reference: MIL,
filter: MIL}

“all Displays the summary and all objects measured, sorted
by the size of the objects exclusive of the objects they
point to.

"al | Ki ds Displays the summary and all objects measured, sorted
by the size of the objects inclusive of the objects they
point to.

classSymbol Displays the summary and all measured objects of the
specified class. You can specify any of the classes listed
in the result frame in Figure 6-7.

reference Displays the summary and all paths within the specified
object that point to the object specified by the reference,
as illustrated in Figure 6-8.

6-18 The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Figure 6-8 A TrueSize listing of references

truesizeidebugl "=l iderHolder" », debugt " outputliew™ 23;

abjects 7 162
frame 4 104
Array 1 24
map 2 40
frame autputlliew
frame kidsl1]

If you specify ni | for the object to be searched,

Tr ueSi ze searches the root view, the global variables,
and the undo-buffer frame—that is, most of memory—
for references to the object specified in the filter
parameter.

You can use Tr ueSi ze to track the space used by an object over time. You
can compare an application’s needs immediately after a reset, for example,
then while it’s executing, and again after it exits. Figure 6-9 illustrates a

Tr ueSi ze measurement over time of the tutorial application developed in
Chapter 3, “A Quick Tour of NTK.”

The Inspector 6-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Figure 6-9 TrueSize measurements over time

6-20

truesize(GetRoot). [hel la:TUT|, 'map>;

objects 2 T2
frame 1 40
map 1 32
map

32 a2 map
#2 HIL
truesize(GetRoots). [hel la: TUT|, 'mapl;
objects 36 1054
frame 21 632
Artay 3 124
string 1 38
map g 260
map

26 36 map

26 36 map

32 22 map

32 32 map

28 28 map

28 28 map

28 28 map

20 20 map

20 20 map

Examining Drawing Efficiency

ffooppli

mop

/¢ oppli

kids[2].
kids[41.
map

kids[0Ol.
kids[1].
kids[2].
kids[2].
kids[1].
kids[4].

cation closed

cation open

map
map

map
kid=s[0]1. map
entryline . map
labelLine . map
map
[owerS| i der . map

You can use the Vi ewAut opsy function to examine the efficiency of your

application’s drawing routines.

You can use Vi ewAut opsy in two different ways:

outlining views If you call Vi ewAut opsy with an argument of ni |, the
Newton toggles the outlining of views. When view
outlining is in effect, the Newton displays the boundary

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

of each view with a gray line. You can use this display
to examine justification and view-layering problems.

slowing drawing If you call Vi ewAut opsy with an integer argument, the
Newton pauses for that number of tics after it draws
each view. This option allows you to examine the
sequence in which your application draws its views.

You might find that views are redrawn, or possibly
drawn and then obscured, before the display stabilizes.
You can improve performance by eliminating
unnecessary drawing.

To eliminate the delay, call Vi ewAut opsy with an

argument of 0.

The Vi ewAut opsy function is described in “ViewAutopsy” on page 6-30.

Debugging Variables

You can control how the Inspector operates by setting a number of variables,
which are summarized in Table 6-1. “Using the Inspector” beginning on
page 6-5 describes these variables as they arise.

Table 6-1 Debugging variables

Variable Value
br eakOnThr ows non- ni |

ni |

trace "functions

The Inspector

Effect

The Inspector reports each
exception and enters a break loop.

The Inspector reports only
exceptions that are not handled by
either the application or the
Newton exception handlers.

The Inspector displays tracing
information for each function that’s
called and message that’s sent.

6-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-22

CHAPTER 6

Debugging

Table 6-1 Debugging variables (continued)

Variable Value Effect

true The Inspector displays tracing
information for function calls and
for variable and slot accesses.

ni | The Inspector displays no tracing
information.
pri nt Dept h ni | A frame display shows all levels of
the hierarchy.
n A frame display shows n levels of
the hierarchy.
printLength ni | A frame display shows all slots in
the frame.
n A frame display shows the first n

slots in the frame.

Debugging Functions

This section describes the debugging functions that are built into the Newton
system software. You can embed these functions in an application under
development or call them interactively in the Inspector window.

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products.
You can place these functions in your source code
conditionally, as described in “Constants and Variables”
beginning on page 4-34. a

You can use the debugging functions to

= retrieve and display objects (Debug, DV, Di spl ay, Print, Wite, and
St r HexDunp)

» enter and exit break loops and examine the program stack (Br eakLoop,
Exi t BreakLoop, and St ackTr ace)

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

= examine memory use (St at s, Tr ueSi ze, and GC)

= slow down drawing and highlight view boundaries so you can examine
your application’s drawing efficiency (Vi ewAut opsy)

Retrieving and Displaying Objects

You use the functions described in this section to retrieve objects and to print
to the Inspector window.

Debug

Debug(templateName)

Returns the view whose template contains a slot named debug with a value
that matches the string in the templateName parameter. NTK automatically
creates a debug slot containing the name of any named slots on an
application built with the Compile for Debugging option in effect.

templateName The name of the template you want to examine, as a
string.

This function scans all of the templates in the system and returns the view

for the first match it finds. A template is considered a match if the initial

characters in a slot named debug match the characters in templateName. If no
match is found, the Debug function returns ni | .

When Debug finds a match, it displays a textual representation of the view
contents in the Inspector window and returns the view. The value of the

Pri nt Dept h variable, listed in Table 6-1 on page 6-21, controls the depth of the
view display.

DV
DV(view)

Displays a view and its children in the Inspector window.
view The view object that you want to display.

The DV function always returns ni | .

The Inspector 6-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-24

CHAPTER 6

Debugging

A quick way to display the contents of a view is to use the Debug function.
To display the view made from a template named hel | oBase, for example,
you would enter this text:

DV(Debug(" hel | oBase"));

If a view is visible on the screen, DV produces a display of the view contents
in the Inspector window, as described in “Displaying the View Hierarchy”
beginning on page 6-8, and, if the application was built with Compile for
Debugging in effect, flashes the view on the Newton screen. If the view is not
visible, DV returns ni | .

You can also specify one of three special symbols for the view argument:

= The' vi ewFr ont Most symbol returns the frontmost view on the screen
that has the vAppl i cat i on flag set in its vi ewF| ags slot

= The' vi ewFr ont Most App symbol returns the frontmost view on the
screen that has the vAppl i cat i on flag set in its vi ew| ags slot, but not
including floating views (those with vF| oat i ng set in their vi ewFl ags
slot)

= The' vi ewFr ont Key symbol returns the view on the screen that
currently accepts keystrokes

Print

Pri nt (object)
Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The Pri nt function lets you print any NewtonScript object. The Pri nt
function appends a newline character to its output, displays quotation marks
around strings, and prefixes characters with $.

The Pri nt function always returns ni | .

For examples illustrating the Pri nt, Di spl ay, and Wi t e functions, see the
section “Displaying Values in the Inspector Window” beginning on page 6-9.

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Display

Di spl ay(object)
Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The Di spl ay function is exactly like the Pri nt function except it does not
append a newline character to its output.

Write
Wi t e(object)

Displays the value of object in the Inspector window.

object An object that you want displayed in the Inspector
window.

The W i t e function is exactly like the Pri nt function except it does not
append a newline character and does not display quotation marks around its
text output.

StrHexDump

St r HexDunp(object, spacelnterval)
Returns a hexadecimal string representing the value of the object.
object The binary object you want to examine.

spacelnterval An integer specifying where to put spaces in the hex
string output. To put spaces after every four bytes, for
example, specify 4. For no spaces at all, specify 0.

You can use St r HexDunp to examine the contents of a binary object.

Note

This function can return an extremely large string object,
depending on the length of the binary object you specify.
Use it carefully. O

The Inspector 6-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-26

CHAPTER 6

Debugging

Using Break Loops

This section describes the functions you use to enter and exit break loops and
to examine the program stack while in a break loop. You can examine the
stack more closely with the extended debugging functions, described in
Chapter 7, “Extended Debugging Functions.”

BreakLoop

Br eakLoop()

Halts execution and allows you to examine the state of your application on
the Newton device. You can also execute any valid NewtonScript code,
including the functions built into the Newton, while in a break loop, as
described in “Breaking” beginning on page 6-11.

If the Newton executes the Br eakLoop function when it’s already in a break
loop, it enters a subsidiary breakloop.

To exit a break loop, click the Exit Break Loop button or execute the
Exi t Br eakLoop function.

ExitBreakLoop

Exi t BreakLoop()

Exits a break loop.

When an Inspector connection is open, the Newton enters a break loop if
= it executes the Br eakLoop function or

= an exception occurs while Br eakOnThr ows is t r ue, as described in
“Breaking” beginning on page 6-11.

If one of these conditions arises when the Newton is already in a break loop,
it enters a subsidiary break loop. Execution of the Exi t Br eakLoop function
exits only the current-level break loop. Program execution resumes when
you exit the first-level break loop.

The Exi t Br eakLoop function always returns ni | .

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

StackTrace
St ackTrace()

Prints a stack trace in the Inspector window.

“Examining the Program Stack” beginning on page 6-12 illustrates a stack
trace and describes its contents.

If you've installed the extended debugging functions, the St ackTr ace
function displays the stack trace described in “NewtonScript Stacks” on
page 7-6.

The St ackTr ace function always returns ni | .

GetLocalFromStack
Get Local Frontt ack(level, symbol)

Displays and returns the value of the local variable symbol.
level The number of the stack frame you want to examine.
symbol The symbol for the local variable you want to examine.

The first two entries on the stack—that is, levels 0 and 1—are used by the
Inspector itself. To access the frame for the current function when the
Newton is in a break loop, start at level 2.

The Get Local Fr ont ack function returns the value of the variable symbol.

Note

The Get Local FronfSt ack function is available only on the
Newton MessagePad platform. O

GetSelfFromStack
Get Sel f Fr onSt ack(level)

Returns the function at the stack frame level specified by the level parameter.

level The number of the stack frame you want to examine.

The Inspector 6-27

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

The first two entries on the stack—that is, levels 0 and 1—are used by the
Inspector itself. To access the frame for the current function when the
Newton is in a break loop, start at level 2.

Note

The Get Sel f Fr ont ack function is available only on the
Newton MessagePad platform.

Examining Memory Use

You use the functions described in this section to examine memory use on
the Newton device and to force a garbage collection.

Stats

Stats()

Returns the amount of free memory in the NewtonScript heap and displays
the amount of free memory and the size of the largest area of free memory.

The St at s function returns the amount of free memory in bytes. You can call
CC first to ensure that any space occupied by unreferenced objects has been
reclaimed.

TrueSize

Tr ueSi ze(object, filter)

Measures the total RAM requirements of an object by adding together its size
and the sizes of all objects it points to. The total does not include read-only
objects, such as objects in ROM or in the package.

object A reference to the object to be measured.

If you pass a value of ni | , Tr ueSi ze looks at the root
frame, the global variables, and the undo-buffer frame.
You use this option when looking for references to an

6-28 The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

filter

object, as described in the description of the filter

parameter.

A filter that controls what data is collected and

displayed.
nil

al |

"al | Ki ds

classSymbol

reference

Displays the summary of objects by type
and the frame in which the data was
collected.

Displays the summary and a list of all
objects measured, sorted by the size of the
objects exclusive of the objects they point
to.

Displays the summary and a list of all
objects measured, sorted by the size of the
objects inclusive of the objects they point
to.

Displays the summary and all objects of
the specified class.

Displays the summary and all paths
within the specified object that point to
the specified reference.

To look for the reference throughout most
of memory, pass a value of ni | for the
object parameter.

The Tr ueSi ze function summarizes the number and kinds of objects
measured and collects specific data about some or all of them, as described in
“Examining Memory Use” beginning on page 6-16.

GC

()

Forces a garbage collection in the NewtonScript frames heap, a reserved area
of system memory from which the system allocates space for all
NewtonScript objects.

The GC function frees all allocated objects that are no longer referenced. The
Newton system software automatically performs a garbage collection when

The Inspector

6-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

memory is needed. You can call GCto ensure that unallocated space is
consolidated before you call the St at s or Tr ueSi ze functions.

The GC function always returns ni | .

Examining Drawing Efficiency

You use the ViewAutopsy function to slow down drawing and highlight
views so you can examine the efficiency of your application’s drawing.

ViewAutopsy

Vi ewAut opsy(functionSpec)

Provides two ways to examine how views are drawn. Supply a value of ni |
to turn on and off the outlining of views, in which the boundary of each view
is marked by a gray line. Supply an integer to specify a pause (in ticks) after
each view is drawn.
functionSpec A value that specifies which drawing option you're
manipulating:
ni | Toggles view outlining.
This option affects both the Newton
screen and printed output. Use it for
debugging justification and view-layering
problems.

integer Forces a pause for the specified number of
ticks after each view is drawn.

This option allows you to examine the
drawing of views, so you can eliminate
unnecessary redrawing.

A value of 0 turns off the delay option
with no effect on outlining.

6-30 The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Debugging Function Summary

Retrieving and Displaying Objects

Debug(templateName)
DV(view)

Pri nt (object)

Di spl ay(object)

W it e(object)

Using Break Loops

Br eakLoop()

Exi t BreakLoop()

St ackTrace()

Cet Local Frontt ack(level, symbol)
Get Sel f Fr onSt ack(level)

Examining Memory Use

Stats()
TrueSi ze(object, filter)
&)

Examining Drawing Efficiency

Vi ewAut opsy(functionSpec)

The Inspector

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-31

CHAPTER 6

Debugging

Newton Programming Problems and Tips

6-32

This section describes several common Newton programming problems and
provides some programming tips.

This section addresses

» setting a slot in the wrong frame because of the inheritance rules
» forgetting to set the function value before exiting the function

= producing memory problems due to unused frame references

» generating unexpected comparison results when a value is ni |

» generating errors when using ni | in an expression

= trying to resize a read-only object

» drawing text that is not appearing on the screen

» attempting to print from within communications code

= using global variables to examine exceptions

» accessing the built-in error codes and messages

Common Programming Problems

This section describes a number of common NewtonScript programming
problems.

Setting the Wrong Slot Value

If you make an assignment to a slot that doesn’t exist, NewtonScript
automatically creates the slot in the current view; you may have intended to
change a slot value elsewhere.

Newton Programming Problems and Tips

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

If the slot you are setting already exists in the view, your assignment works
properly. For example, the assignment to the slot named t i e in the
following example always works as expected.

myTenplate := {
vi ewd ass: cl Vi ew,
vi ewBounds: Set Bounds(0, 0, screenWdth, screenHeight),
vi ewFl ags: vApplication,
debug: "nyTenpl ate",

time: O,
vi ewSet upDoneScri pt: func()
time := Time()

}

If you make an assignment to a slot that doesn’t exist, NewtonScript creates
it as a local variable within the scope of the method only. If the slot exists
only in the parent of your view, its value is set in the parent view.

Suppose, for example, that in the view in this example there were no slot
named t i e, but the parent view did include a slot named t i me. Then, the
assignment

time 1= Time()
would assign the value of the Ti ne function to that slot in the parent view.

You can use the special pseudo-variable sel f to make sure that the slot is
created in your view if it does not yet exist there. The value of sel f is
always the current receiver. In the following example, a slot named t i e is
created in the ny Tenpl at e view when the assignment statement is executed.

myTenplate : = {
vi ewd ass: cl Vi ew,
vi ewBounds: Set Bounds(0, 0, screenWdth, screenHeight),
vi ewFl ags: vApplication,
debug: "nyTenpl ate",

Newton Programming Problems and Tips 6-33

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-34

CHAPTER 6

Debugging

vi ewSet upDoneScri pt: func()
self.time := Tinme()

}

Using sel f ensures that the slot is created if it does not exist in the
current receiver.

Similarly, if you want to be sure that you are accessing or creating a slot in
the parent of your view, use the Par ent method, as shown here:

self:Parent().tinme := Tinme()

For more details on how inheritance affects setting slot values, see The
NewtonScript Programming Language.

Failing to Set a Return Value

Every function in NewtonScript returns a value, whether or not you
explicitly assign one. If you use the return value, make sure that all pathways
through your function establish one.

Producing Memory Problems With Unused Frame References

If you maintain a reference to a child view, the Newton object system retains
the child view. If you keep references to child views that are no longer
needed, your application might run out of memory and display an exception.

The solution is to clean up (set to ni |) your child view references when you
are done with the views. This allows the Newton object system to reclaim the
memory used by the view frame.

Generating Unexpected Comparison Results With nil Values

If NewtonScript can’t find a slot in a frame, it considers the slot’s value to be
ni | . This assumption can mask mistyped slot names and produce
misleading results.

Consider, for example, this function:

Newton Programming Problems and Tips

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

MyConpar eFrane: func(franel, franme2)
begi n
if (franel.date = franme2.date) and
(franel.month = frame2. nonth) then
true;
end

If you made this call,

MyConpar eFr ame(franel, frane2)

to compare the following two frames,

franmel : = {
day: 5, /1 note day instead of date
nmont h: 12,

3

franme2 :={
day: 3, /1l note day instead of date
nmont h: 12,

b

the result would be t r ue. Neither f r anel nor f r ame2 contains a slot
named dat e, which is what the My Conpar eFr ane function is comparing.
The statement

franel.date = frane2.date
evaluates to
nil = nil

which causes the function to returnt r ue.

Newton Programming Problems and Tips 6-35

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

6-36

CHAPTER 6

Debugging

Using nil in Expressions

A non-numeric value in a mathematical expression generates an error. For
example, the following but t onCl i ckScri pt method generates an
exception:

func()
begi n
 ocal index: =0;
[ocal str:="nyString";
print("The button has been clicked");
i ndex := index + StrPos(str, "xyz", 0);
print("Reached the end of the button click script");
end

If you use this method, you’ll see the following output in the Inspector
window:

"The button has been clicked"
Exception |evt.ex.fr.type;type.ref.frame|: [-48404]
Expected a nunber. Cot: {value: NI L}

You get this output because the St r Pos function does not find the substring
"xyz" and thus returns ni | as its value.

You can also generate this error if you define a template that is based on a
system proto and you forget to define one of the required numeric slots. If
the value of one of these slots is used in a computation, then an exception is
raised. For example, if you create a template based on the pr ot ol nput Li ne
proto and do not define the vi ewLi neSpaci ng slot, an error occurs because
that value is used in the vi ewDr awScr i pt method of the template.

Writing to a Read-Only Object

Templates are commonly read-only objects, and trying to alter one raises an
error. This error arises in two common cases:

= trying to resize an array stored in a template

Newton Programming Problems and Tips

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

» trying to add children to a view whose st epChi | dr en array is stored in
a template

Suppose, for example, you create an evaluate slot with an array defined as its
default value:

myArray: [1, 2, 3, 4]

When you instantiate the template at run time, a RAM-based view is created
that inherits the read-only array. If you try to modify this array by adding
elements to it, you receive a read-only error.

To add elements to the array, you need to clone it first to create a RAM-based
copy:

if IsReadOnly(nyArray) then nyArray := C one(nyArray);

Cloning the array copies the read-only array into RAM, creates a new
nyAr r ay slot in the RAM-based view, and puts a reference to the RAM copy
of the array in that slot.

A read-only error can also occur with slots that contain frames and strings.
The error is less common with strings, though, because they are usually
replaced rather than changed in place.

You might also encounter problems with writing to a read-only object when
you define a template that is composed of multiple sub-templates. The
template contains a st epChi | dr en array that is predefined. When you
instantiate the template at run time, a RAM-based view is created that
inherits the read-only array. If you want to add children to the view at run
time, you need to clone the st epChi | dr en array:

if not self.stepChildren then
sel f.stepChildren :=[];
else if IsReadOnl y(stepChildren) then
stepChildren := C one(stepChil dren);
AddArraySl ot (st epChil dren, newkKi dl nTown) ;

Newton Programming Problems and Tips 6-37

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Text Is Not Drawing

If you've passed a valid string to the MakeText function, but the text does
not appear on the screen, it's possible that the rectangle you’ve specified in
the arguments to MakeText is too small. Try passing a larger rectangle to the
MakeText function.

Problems with Printing and Communications

Problems with the Pri nt, Wit e, or Di spl ay functions are common in
communications code, especially if the functions appear inside state frames.
Check first for these two likely causes:

» The serial port is already in use for other communications. Only one
communications channel can be open at any time.

» The Print statements are generating a lot of interrupts. This interferes
with the serial line and causes hang-ups in the communications.

If you need to issue a quick message from within your communications code

and need to avoid calling Pri nt, Wi t e, and Di spl ay, you can use the

system notification facility instead. For example, you could display a quick

message with the following code.

Get Root () : Notify(kNotifyAlert,
Ensurel nternal ("My Comms App"),
Ensurelnternal ("1'm|ow on nmenory"));

Another technique for reporting messages is to create an error array in the
application base view. You can then add strings to this array from within
your communications code, as shown here:

AddArraySl ot (Get Root (). (kAppSynbol). DebugArr ay,
"My Comms App:" && nmyDebugDat a);

6-38 Newton Programming Problems and Tips

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Programming Tips for Debugging

This section provides several suggestions to help you add debugging code to
your applications.

Using Global Variables to Examine Exceptions

If you are handling exceptions in your application, you can use the global
variables shown in Table 6-2 to discover information about the exception.
Note that the values of these variables are assigned by the top-level (system)
exception handler, which means that you can use the values reliably only
after the exception alert message has been displayed on the Newton screen.

Table 6-2 Exception handling global variables

Variable Description

| ast Ex The string name of the most recent exception

| ast ExError The integer error code of the most recent exception

| ast ExMessage The string message associated with the most recent
exception, if the exception contains a message

IMPORTANT

The system assigns the current exception values to | ast Ex,
| ast ExError, and | ast ExMessage after the exception
message has been displayed on the screen. These variables
are not current when you set Br eakOnThr ows to t r ue in
the Inspector. a

Maintaining View State

If you need to maintain the state of a view, store your state information in a
soup. If you maintain the view state in a view frame, you lose the state
information when the view is closed.

Newton Programming Problems and Tips 6-39

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 6

Debugging

Accessing the Parent of a View

You can access the parent of a view with the Par ent function For example:

nyParent := nyView Parent();

Don’t use a path name that starts with _par ent .

6-40 Newton Programming Problems and Tips

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging
Functions

This document describes the extended NewtonScript debugging functions,
which let you study and manipulate an application running on a Newton
personal digital assistant.

You can use the functions described in this chapter to

= set break points in an application after it’s been compiled and installed
= step through program execution

= examine and change the execution environment

» display a textual representation of the interpreter instructions

WARNING

The functions described in this chapter are for debugging
purposes only. Do not include them in released products.

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Compatibility

You can install the extended debugging functions only on the Newton 2.0
platform.

Installing the Extended Debugging Functions

The extended debugging functions are distributed in a Newton package file
named NS Debug Tools.pkg. You download them to the Newton using the
Newton Package Installer. To get the most out of the extended debugging
functions, install the package named DebugHashToName.pkg as well.

To remove the extended debugging functions, scrub the NS Debug Tools icon
in the Extras drawer. To remove DebugHashToName, scrub its icon in the
Extensions folder in the Extras drawer.

Using the Extended Debugging Functions

The extended debugging functions let you study NewtonScript functions in
a Newton application, through an NTK Inspector window with an open
connection to a Newton. The extended debugging functions are executed on
the Newton.

When the NTK Compile for Debugging option is set, NTK saves debugging
information about each NewtonScript function it compiles. The extended
debugging functions use this information—always enable Compile for
Debugging when you're compiling code that you plan to examine with the
functions described in this chapter.

Compatibility

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Break Loops and Break Points

Many of the debugging functions are most useful while the Newton is in a
break loop—that is, while program execution has been suspended and the
Newton is accepting input only from the Inspector connection. When it
receives input, the Newton processor evaluates it, prints a visual
representation of the value of the last statement evaluated, and resumes
waiting for input. This process is the read-evaluate-print (REP) loop.

You can set the Br eakOnThr ows variable to a non-ni | value to cause the
Newton to go into into a break loop whenever an exception is raised.

With the extended debugging functions you can set and manipulate break
points in an application that’s already compiled and downloaded. While the
Newton is in a break loop, you can step through the application and examine
and change the state of the program.

Enabling Break Points

To use the break points you’ve added to functions that are already compiled,
you must turn on the interpreter code that checks for them by either:

= checking Enable Breakpoints in the NS Debug Tools application, or

= executing the G obal | yEnabl eBr eakPoi nt s function with a non-ni |
value as the argument.

Checking for break points slows down execution of all NewtonScript code,
whether or not it contains break points. Be sure to disable break points when
you're not using the extended debugging functions.

When break points are disabled, the extended debugging functions might
not be able to supply complete information in some cases:

= Program counter values might be inaccurate in the display upon entering
a break loop and in reports by the St ackTr ace, Wer e, and
Get Cur r ent PC functions. If an inaccurate program counter value is
possible, the display includes a question mark (?) after the value. You can
suppress the warning by placing a slot named Nol naccWar ni ng with a
non-ni | value in the NSDPar anfr anme, described in “Adjusting the
Debugging Environment” on page 7-10.

Using the Extended Debugging Functions 7-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-4

CHAPTER 7

Extended Debugging Functions

» Occasionally, the function name and the number of arguments are not
available. In this case, the display includes as much information as
possible.

» Non-interpreted functions might not be reported in the stack trace
displays.

You can avoid all of these problems by enabling break points whenever

you're using the extended debugging functions, whether or not you're using

break points.

Creating, Removing, and Disabling Break Points

You can create a break point in an interpreted function with the

I nst al | Br eakPoi nt function. You specify both a function object and a
program counter value, which represents an offset into the function. To insert
a break point at the beginning of a slider’s changedS| i der method, for
example, you would execute a statement something like this:

poi nt :=
I nst al | Br eakPoi nt (Debug("nmySlider").changedSli der, 0);

If the function is in the current call chain, you can reach the function object
with the Get Cur r ent Funct i on function, which returns the function at the
specified place in the call chain. To set a break point in the function that was
executing just before a break occurred, for example, you would execute this
statement:

poi nt := Install BreakPoi nt (CGet Current Functi on(0), 0);

You can remove break points individually with RenmoveBr eakPoi nt —
passing the break point specification frame returned by

I nst al | Br eakPoi nt —or you can remove all break points at once with
RenmoveAl | Br eakPoi nt s.

You can also disable an individual break point with the
Enabl eBr eakPoi nt function, and you can name a break point for later
identification with Set Br eakPoi nt Label .

Using the Extended Debugging Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

The stepping functions create temporary break points, which are removed as
soon as they’re used.

You can enable or disable all break points in an application without
removing them with the function G obal | yEnabl eBr eakPoi nt s.

Making Break Points Conditional

You can make break points conditional by defining a function named
NSDBr eakLoopEnt ry that evaluates the circumstances and either cancels or
authorizes the break.

The Br eakLoop function—which is executed when the Newton reaches a
break point—looks for a global function with the name

NSDBr eak LoopEnt r y and, if it finds one, executes it. The function is called
with three parameters:

» the name of the function in which the break occurred
= the value of that function’s program counter
= an array containing the arguments to the function

If the NSDBr eakLoopEnt r y function returns a non-ni | value, the Newton
enters a break loop. If NSDBr eakLoopEnt ry returns ni | , the Newton does
not enter the break loop.

When the Newton exits the Br eakLoop function, it looks for a global
function with the name NSDBr eak LoopEXi t and, if it finds one, executes it.
The function is called with a single argument, which reports whether or not
the Newton actually entered the break loop. If NSDBr eakLoopEnt ry
executed, NSDBr eak LOOpEXi t receives its return value; if no

NSDBr eakLoopEnt r y was found, NSDBr eakLoopExi t receives the value
true.

Entering a Break Loop

When the Newton enters a break loop with the extended debugging
functions installed, the Inspector displays

» the name of the current function

Using the Extended Debugging Functions 7-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

» the value of the current program counter and a textual representation of
the instruction that the program counter is pointing to

s the break level number
The example here illustrates a break caused by a break just before instruction
25 of achangedSl i der method

mySl i der. changedSlider(), 25: Pop
Entering break |oop: level 1

NewtonScript Stacks

The NewtonScript interpreter keeps its own collection of data structures.
NTK presents the data to you as if there were a single function-call stack,
which contains an activation record for each active function. An activation
record is identified by its level on the stack; the current function is at level 0.
A stack activation record contains

» a program counter that points to the next instruction that’s to be executed
» the receiver and implementor, if any

» the function’s parameters, temporary variables, and named variables

You can use the St ackTr ace function to display a summary of the
information in the function-call stack. For example,

mySl i der. changedSlider(): 25
90112. vi ewFi nal ChangeScri pt (50, 83):29

Each line in the display represents one activation record. The current
function (changedSl i der in this example) appears first in the display; it is
the record at stack level 0. In this example, vi ewFi nal ChangeScri pt is at
stack level 1. The display also shows the values of the local variables (in
parentheses) and the current program counter value (following the colon).

You can use the stack-access functions—described in “Accessing the Stack”
beginning on page 7-16—to examine the functions and their context in more
detail and to change stack values.

Using the Extended Debugging Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Paths to Slots

You can use the Get Pat hToSl ot and Get Pat hWer eSet functions to find
where in a frame’s parent chain a specified slot exists and where in the chain
the slot’s value would change.

Suppose, for example, the tutorial application developed in Chapter 3 is
open on the Newton screen. To find out where in the view hierarchy the
t ext slotin the s| owFl oat er But t on view exists, you could enter this text:

Get Pat hToSI ot (debug("showFl oat erButton"), 'text);

The text slot is defined in the button’s proto template, and so the Newton
supplies this path expression:

#4419829 proto.text

If you were to change the value of the t ext slot at run time, however, the
change would affect only the current instance. The Get Pat hWer eSet
function, therefore, returns a path expression to the t ext slot within the
button’s view:

Get Pat hWher eSet (debug("showrl oat erButton"), 'text);
#4419A4D t ext

NewtonScript Byte Code

The NTK compiler turns the text—or source code—for a NewtonScript
function into a function object—that is, a frame containing, among other
things, the hardware-independent byte code instructions that are interpreted
when the function executes.

You can display a byte code listing of a NewtonScript function with the
Di sasmfunction. This example shows a simple function and its
disassembled instructions:

func()
begin
Set Val ue(| ower Di spl ay, 'text, nunberstr(viewal ue));

Using the Extended Debugging Functions 7-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

: changeLower (vi ewval ue, count);
end

Di sasm(Debug("nySlider").changedSli der);

0: Fi ndVvar | ower Di spl ay
1 Push "text

2: Fi ndVar vi ewval ue

3: Push " Nurber St r
4. Cal | 1

5: Push ' Set Val ue

6: Cal | 3

7. Pop

8: Fi ndVar vi ewval ue

9: Fi ndVvar count

10: PushsSel f

11: Push ' changeLower
14. Send 2

15: Ret urn

You can disassemble a part of a function with the Di sasnRange function.

The disassembly listing shows the offsets to instruction boundaries, which
you need for the program counter argument you pass to
I nst al | Br eakPoi nt and the stepping function RunUnti | .

If a function is throwing an exception, you can install a break point at a
specific instruction, well before the exception is raised, and then use the
stepping functions and the stack-access functions to examine the
circumstances leading up to the exception.

The disassembly listing is not identical to the actual byte code—it's merely a
textual reconstruction of the binary instruction object. “Interpreter
Instructions” beginning on page 7-23 describes the disassembler output.

Using the Extended Debugging Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Extended Debugging Functions Reference

This section describes the extended NewtonScript debugging functions.

WARNING
The functions described in this chapter are for debugging
purposes only. Do not include them in released products. a

You can use the extended debugging functions to

= manipulate break points (I nst al | Br eakPoi nt, RenbveBr eakPoi nt,
RenoveAl | Br eakPoi nt's, Get Al | Br eakPoi nt s, and
d obal | yEnabl eBr eakPoi nt s, plus the optional user-defined
functions NSDBr eakLoopEnt ry and NSDBr eakLoopExi t)

s step through application execution (St ep, St epl n, St epQut , and
RunUnti |)

» access the function-call stack (St ackTr ace, Get Cur r ent Functi on,
Get Cur rent PC, Set Cur r ent PC, Wher e, Get Al | TenpVar s,
CGet TempVar, Set TenpVar, Get Al | NanedVar s, Get NanedVar,
Set NanedVar, Get Cur r ent Recei ver, and Get Curr ent | npl enment or)

= retrieve slot paths (Get Pat hToSI ot and Get Pat hWer eSet)

» display a disassembly listing of compiled code (Di sasmand
Di sasnRange).

Extended Debugging Functions Reference 7-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-10

CHAPTER 7

Extended Debugging Functions

Adjusting the Debugging Environment

You can adjust the behavior of some extended debugging functions by
defining a global frame named NSDPar anfr are, in which you place slots
with predefined meanings:
ver bose A flag that controls how much information some
functions display.
ni | a brief description
non-ni | a longer description
Nol naccWar ni ng A flag that controls whether or not some functions
display a warning when the information returned might
be inaccurate. These warnings are necessary only when
checking for break points is disabled.
ni | a warning is displayed
non-ni | no warning is displayed
This statement entered in the Inspector window, for example, suppresses the
longer comments and the warnings when information returned might be
inaccurate.

NSDPar anfranme := {verbose: nil,
nol naccWar ni ng: true
b

You can also include NSDPar anfr ame slots that specifically control the
display of disassembly listings, as described in “Interpreter Instructions”
beginning on page 7-23.

Manipulating Break Points

You use the functions described in this section to manipulate break points in
an application that’s already compiled and installed on the Newton.

Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

InstallBreakPoint
I nstal | Br eakPoi nt (function, PC)

Sets a break point within a specified function just before a specified
instruction.

function A function object.

pC A program-counter value within the function; this value
must point to the beginning of a byte code instruction.

The I nst al | Br eakPoi nt function returns a break point specification
frame, which you can later pass to RenoveBr eakPoi nt .

RemoveBreakPoint

RemoveBr eakPoi nt (breakPointSpec)
Removes the specified break point.

breakPointSpec A break point specification frame, returned previously
by I nst al | Br eakPoi nt .

EnableBreakPoint

Enabl eBr eakPoi nt (breakPointSpec, enableMode)

Enables or disables an individual break point, depending on the value of the
enableMode parameter.

breakPointSpec A break point specification frame, returned previously
by I nst al | Br eakPoi nt .

enableMode The instruction to turn turn the break point on or off:
<>ni | Enable the break point.
ni | Disable the break point.

RemoveAllBreakPoints

RenoveAl | Br eakPoi nt s()

Removes all break points installed by | nst al | Br eakPoi nt .

Extended Debugging Functions Reference 7-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

GetAllBreakPoints

Get Al | BreakPoi nt s()

Returns a frame describing all current break points. This frame contains a
slot named pr ogr anCount er whose value is an array of break point
specifications. Each break point specification contains i nst r ucti ons and
pr ogr anCount er slots used by the NewtonScript interpreter to determine
when to trigger the break point.

GloballyEnableBreakPoints

d obal | yEnabl eBr eakPoi nt s(enableMode)

Enables or disables checking for break points in the NewtonScript interpreter.

enableMode The instruction to turn checking either on or off:
<>ni | Enable checking for break points.
ni | Disable checking for break points.

The G obal | yEnabl eBr eakPoi nt s function returns the previous status of
breakpoint enabling. It also adjusts the NS Debug Tools package icon in the
Extras Drawer to reflect the breakpoint-enable status.

While break points are enabled, the execution of all NewtonScript code—
with or without break points—is slowed down while the interpreter checks
for break points. Disabling all break points allows NewtonScript code to run
at full speed.

You can also enable and disable break points through the Enable Breakpoints
checkbox in the NS Debug Tools application on the Newton.

7-12 Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

SetBreakPointLabel
Set Br eakPoi nt Label (breakPointSpec, label)

Establishes a label for a specified break point.

breakPointSpec A break point specification frame, returned previously
by I nst al | Br eakPoi nt .

label The label, which is placed in the break point
specification frame. The label can be a string, a symbol,
or any other valid NewtonScript value.

GetBreakPointLabel
Cet Br eakPoi nt Label (breakPointSpec)

Returns the label for the specified break point.

breakPointSpec A break point specification frame, returned previously
by I nst al | Br eakPoi nt .

User-Defined Breakpoint Functions

You can make a break loop conditional or execute your own code on the way
into the loop by defining a function with the name NSDBr eakLoopEnt ry;
you can execute code on the way out of a break loop by defining a function
with the name NSDBr eakLoopEXi t .

When the Newton enters a break loop with the extended debugging
functions installed, the Br eakLoop function looks for a global function with
the name NSDBr eakLoopEnt r y. If it finds one, it executes it.

As the Newton exits the Br eakLoop function, it looks for a global function
with the name NSDBr eak LoopExi t . If it finds one, it executes it before
resuming program execution.

Extended Debugging Functions Reference 7-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

NSDBreakLoopEntry

NSDBr eakLoopEnt r y(function, PC, paramArray)

Screens a break point or executes user-defined code while entering a break

loop.

function A function object.

rC A program-counter value within the function. This
argument is ni | for non-interpreted functions, such as
functions in ROM, functions compiled into native code,
or C functions.

paramArray An array containing the arguments to the current

function, in one of two formats.

If the class of the array is the symbol
' par anNaneAndVal ues, the array is organized in
paired entries, that is:

[param1Name, paramlValue, param2Name,
param2Value, ..]

If the class of the array is the symbol 'par anVal ues,
the array contains a series of values, that is:

[param1Value, param2Value, ..]

You can define an NSDBr eakLoopEnt r y function to suppress breaks that do
not fit the profile you're interested in. You can check not only the function’s
name and program counter value but also the values of its arguments.

If your NSDBr eakLoopEnt ry function returns ni | , the Newton does not
enter the break loop but instead looks for a function named
NSDBr eak LoopEXxi t .

If your NSDBr eakLoopEnt ry function returns any non-ni | value, the
Newton enters a break loop.

7-14 Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

NSDBreakLoopEXxit
NSDBr eak LoopExi t (didBreakLoopHappen)

Executes user-defined code while exiting a break loop.

didBreakLoopHappen The return value of the NSDBr eakLoopEnt ry function,
ortrue if no NSDBr eakLoopEnt r y function executed.

You can define an NSDBr eakLoopEXxi t function to restore any data you've
changed in the NSDBr eakLoopEnt r y function.

Stepping

You use the functions described in this section to step through code. These
functions are meaningful only while the Newton is in a break loop.

Step

Step()

Executes one byte code instruction and then returns to the REP loop.

Stepln
St epl n()

If the current instruction is a function call or a message send, enters the new
function and then returns to the REP loop without executing the first
instruction. If the function call or message send is a non-interpreted function,
St epl n displays a warning, does not enter the function, and leaves the
program counter unchanged.

StepOut
St epQut ()

Continues execution until the current function returns, and then returns to
the REP loop. If the caller is not an interpreted function, execution stops just
before the first instruction of the next NewtonScript function on the
function-call stack.

Extended Debugging Functions Reference 7-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

RunUntil

RunUnt i | (function, PC)

Continues execution until the interpreter reaches the specified location
within the specified function.

function A function object.

rC A program-counter value within the function; this value
must point to the beginning of a byte code instruction.

The RunUnt i | function sets a temporary break point and then allows the
Newton to resume execution. When execution reaches the break point, the
break point is removed and the Newton returns to the REP loop without
executing the next instruction.

Accessing the Stack

You use the functions described in this section to examine and manipulate
the function-call stack. The function that was executing when the Newton
entered the break loop is at level 0.

StackTrace

StackTrace()

Displays the names of the functions on the function-call stack, their program
counter values, and the values of their parameters.

When the extended debugging functions are installed, the stack trace
display—triggered by entering the St ackTr ace function or clicking the
Stack Trace button—is as described in this chapter on page 7-6, not as
described in Chapter 6, “Debugging.” To display a stack trace in the original
format, you can use the St ackTr aced d function.

7-16 Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Note

The debug slots of many system prototypes are encoded as
integers, which appear in the stack trace display. If you
install the DebugHashToName application on the Newton,
the debugging functions can map the integers to strings and
produce more readable output. O

GetCurrentFunction

Get Cur rent Funct i on(level)

Returns the function object that is currently executing at the specified level of
the function-call stack.

level An integer that specifies which stack frame to examine.

GetCurrentPC
Get Cur r ent PC(level)

Returns the value of the program counter in the stack frame at the specified
level of the stack.

level An integer that specifies which stack frame to examine.

SetCurrentPC
Set Cur r ent PC(newPC)

Sets the value of the program counter in the current stack frame. When you
continue execution (using Exi t Br eakLoop or any of the stepping
functions), execution starts at newPC.

newPC A program counter value.

Warning

Set Cur r ent PCis a dangerous function. When you change
a program counter, be sure to adjust the values of the
temporary and named variables as necessary. Do not change
the program counter so that it points to an instruction that
needs a different number of temporary variables. O

Extended Debugging Functions Reference 7-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-18

CHAPTER 7

Extended Debugging Functions

Where

Wer e()

Identifies the current function and displays the value of the current program
counter and a textual representation of the byte code instruction the program
counter is pointing to.

GetAllTempVars

Get Al | TenpVar s(level)

Returns an array containing the values of the temporary variables pushed
and popped while a function executes.

level An integer that specifies which stack frame to examine.

GetTempVar

Get TenpVar (level, offset)

Returns the value of the temporary variable at the specified offset into the
temporary variable list at the specified level of the stack.

level An integer that specifies which stack frame to examine.

offset An integer that specifies which temporary variable to
examine. The variable added most recently is at offset 0,
the one before that is at offset 1, and so on.

SetTempVar

Set TenpVar (level, offset, newValue)

Sets the value of the temporary variable at the specified offset into the stack
of temporary variables at a specified level of the stack.

level An integer that specifies which stack frame to
manipulate.
offset An integer that specifies which temporary variable to

change. The most recent entry is at offset 0.

newValue The new value for the temporary variable.

Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

A temporary variable must already exist at the specified offset; its value is
replaced.

GetAlINamedVars
Get Al | NarredVar s(level)

Returns a frame containing the names and values of all declared, closed-over,
and otherwise locally defined variables at the specified level of the stack.

level An integer that specifies which stack frame to examine.

The Get Al | NarredVar s function displays a warning when it detects an
undeclared local variable, which is technically possible but not efficient
programming in NewtonScript.

GetNamedVar
Get NamedVar (level, varNameSymbol)

Returns the value of the specified varible from the list of named variables at
the specified level of the stack.

level An integer that specifies which stack frame to examine.
varNameSymbol The symbol for the named variable to be examined.
SetNamedVar

Set NamedVar (level, varNameSymbol, newValue)

Sets the value of the named variable at the in the list of named variables at a
specified level of the stack.

level An integer that specifies which stack frame to examine.
varNameSymbol The symbol for the named variable to be changed.
newValue The new value of the named variable.

A variable with the specified name must already exist; its value is replaced.

Extended Debugging Functions Reference 7-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-20

CHAPTER 7

Extended Debugging Functions

GetCurrentReceiver

Get Cur rent Recei ver (level)
Returns the current receiver at the specified level of the stack.

level An integer that specifies which stack frame to examine.
The function that was executing when the Newton
entered the break loop is at level 0.

The Get Cur r ent Recei ver function returns sel f.

The current receiver is the value of sel f .

GetCurrentimplementor

Get Current | mpl enent or (level)
Returns the current implementor at the specified level of the stack.

level An integer that specifies which stack frame to examine.

Retrieving Paths

This section documents the functions that return path expressions to slots.
You can use these functions to search for a slot in a frame, using both parent
and proto inheritance rules.

GetPathToSlot

Get Pat hToSI ot (aFrame, aSymbol)

Returns the path expression from the specified frame to the slot with the
specified symbol.

aFrame The frame where the search begins.
aSymbol The symbol for the slot.

The GetPathToSlot function returns the path to the slot whose value would
be returned by Get Var i abl e(aFrame, aSymbol) .

If the symbol is not found, Get Pat hToS| ot returns an empty path
expression.

Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

GetPathWhereSet
Cet Pat hVer eSet (aFrame, aSymbol)

Returns the path expression for the path to the frame in which a specified
slot’s value would be set if the value of the slot changed.

aFrame The frame where the search begins.
aSymbol The symbol for the slot.

The GetPathWhereSet function returns the path to the slot whose value
would be changed by Set Var i abl e(aFrame, aSymbol, aValue) . The
function begins its search for the slot in the specified frame and makes use of
full proto and parent inheritance.

Disassembling

You can use the Di sasmand Di sasnRange functions to disassemble a block
of code or part of a block of code. The disassembly functions produce a
textual representation of the function’s byte code.

“Interpreter Instructions” beginning on page 7-23 describes the output of the
disassembly functions.

Disasm
Di sasn{(function)

Displays a disassembly listing of function.

function A function object.

Extended Debugging Functions Reference 7-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

DisasmRange

Di sasnRange(function, start, end)
Displays a disassembler listing of function between start and end.
function A function object.

start A program counter value within function where
disassembly is to begin.

end A program counter value within function where
disassembly is to end.

Summary of Extended Debugging Functions

This section summarizes the extended debugging functions.

Manipulating Break Points

I nst al | BreakPoi nt (function, PC)
RenoveBr eakPoi nt (breakPointSpec)

Enabl eBr eakPoi nt (breakPointSpec, enableMode)
RenmoveAl | Br eakPoi nt s()

Get Al | Br eakPoi nt s()

G obal | yEnabl eBr eakPoi nt s(enableMode)
Set Br eakPoi nt Label (breakPointSpec, label)
Cet Br eakPoi nt Label (breakPointSpec)

Br eakLoop()

NSDBr eakLoopEnt r y(function, PC, paramArray)
NSDBr eakLoopExi t (didBreakLoopHappen)

7-22 Extended Debugging Functions Reference

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Stepping

Step()

Stepln()

St epQut ()

RunUnti | (function, PC)

Accessing the Stack

Qui ckSt ackTrace()

Get Cur rent Funct i on(level)

Get Cur r ent PC(level)

Set Cur r ent PC(newPC)

Wher e()

Get Al | TempVar s()

Get TenpVar (level, offset)

Set TenpVar (level, offset, newValue)
Get Al | NarredVar s(level)

Get NamedVar (level, varNameSymbol)
Set NanmedVar (level, varNameSymbol, newValue)
Get Cur rent Recei ver (level)

Get Current | nmpl enent or (level)

Retrieving Paths

Cet Pat hToSI ot (aFrame, aSymbol)
Get Pat h\her eSet (aFrame, aSymbol)

Disassembling

D sasm()
Di sasnRange(function, start, end)

Interpreter Instructions

Interpreter Instructions 7-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

This section describes the interpreter instructions displayed by the Di sasm
and Di sasnRange functions and by the Inspector when the Newton enters a
break loop with the extended debugging functions installed.

The instructions displayed by the debugging tools are not identical to the
actual byte code generated by the NTK compiler—they are rather a textual
representation of the compiled function.

You can control the amount of information displayed in the disassembly

listings by creating a global frame named NSDPar anfr ame, in which you

define one or more of these slots:

ver bose A flag that controls the display of some instructions.
The verbose display includes a brief description of the
instruction’s parameter and the parameter’s offset in the
current lexical scope.
ni | no description and offset displayed
non-ni | description and offset displayed

di sasm nst W dt h An integer that specifies the width, in spaces, of the
instruction column in a disassembly listing.
A value of t r ue invokes the default column width; a
value of ni | specifies only a space between columns.

disasmArgWidth An integer that specifies the width, in spaces, of the
comment column in a disassembly listing

A value of t r ue invokes the default width; a value of
ni | specifies only a space between the comment
column and the third column, which displays the
additional information triggered by the ver bose flag.
This statement entered in the Inspector window, for example, suppresses the
descriptive comments and sets the column widths to the defaults.

NSDPar anframe : = {verbose: nil,
di sasm nst Wdt h: true,
Di sasmArgW dt h: true

b

7-24 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Stack Operations

The instructions described in this section manipulate the NewtonScript
stack. When a function is called, the parameters are passed on the stack and
the result is returned on the stack.

For the most part, if an interpreter instruction uses a value from the stack, it’s
popped. If there is a result, it’s pushed.

Pop

Pop
Pops the top element from the stack.

di sasm(func() begin Sleep(10); true end);

0: PushConst ant 10

3: Push 'Sl eep
4: Call 1

5: Pop

6: PushConst ant TRUE
9: Return

In this example, the Pop instruction appears where it does because the result
of the function call isn’t used and its value must be removed from the stack.

PushSelf
PushSel f

Pushes the current receiver onto the interpreter stack.

di sasnm(func() self)

0: PushSel f
1: Return
Interpreter Instructions 7-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-26

CHAPTER 7

Extended Debugging Functions

Push

Push X
Pushes the value X on the top of the stack.

di sasm(func() "foo")

0: Push "foo"
1: Return
PushConstant

PushConst ant X
Pushes the value X on the top of the stack. PushConst ant is used when X is

an immediate that fits into 16 bits.

di sasn(func() nil);
0: PushConst ant NI L
1: Return

FindVar

Fi ndvar X

Looks for the variable namedX in the lexical context and then in the current
receiver (sel f), including both proto and parent inheritance. If that search
fails, Fi ndVar searches the global variables for X. When it finds X, Fi ndVar
pushes its value on the stack. If X is not found, Fi ndVar pushes ni | on the
stack.

This instruction implements variable lookup as described in The
NewtonScript Programming Language.

di sasm(func() x)
0: Fi ndVvar X
1: Return

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

You can control the amount of information displayed with the Fi ndVar
instruction by setting the value of the ver bose slot in the NSDPar anfr anme
frame, as described on page 7-24.

GetVar
GetVar X

Gets the paramater or local named X and pushes it onto the stack.

di sasm(func(x) x)
0: Get Var X
1: Return

You can control the amount of information displayed with the Get Var
instruction by setting the value of the ver bose slot in the NSDPar anfr anme
frame, as described on page 7-24.

MakeFrame
MakeFrane N

Using the frame map found on the top of the stack, constructs a frame using
the next N elements of the stack (in bottom-up order) to populate the slots in
the frame. The resulting frame is pushed on the stack.

di sasm(func() {x: 1, y: 2})

0: PushConst ant 1
1: PushConst ant 2
4: Push [#4415A35]
5: MakeFrane 2
6: Return
Interpreter Instructions 7-27

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

MakeArray

MakeArray N

Constructs an array of the class of the top element of the stack, placing the
next N elements of the stack (in bottom-up order) in the array. The resulting
array is pushed on the stack.

The default class of an array is Ar r ay. The instruction Push Arr ay may
therefore appear just before MakeAar r ay for unclassed arrays.

The instruction MakeArray - 1 pops an integer and array class from the
stack and allocates an array of that class and length. This is used in the
foreach/ col | ect statement.

di sasm(func() [foo: 1, 2])

0: PushConst ant 1
1: PushConst ant 2
4: Push 'foo
5: MakeArray 2
6: Return
GetPath
GetPath N

Looks for the slot on the top of the stack in the frame that’s second on the
stack, using _pr ot 0 inheritance only. If NisOthennil.yisnil. If Nis1
then ni | . y throws an exception.

di sasm(func() x.y.2z)

0: Get Var X
1: Push y.z
2. CGetPath 1
3: Return

7-28 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

SetPath
Set Path N

Assigns the value that’s on the top of the stack to the slot that’s second on the
stack in the frame that’s third on the stack. If N is 0 the result is not put on
the stack. If N is 1, the result is put on the stack.

di sasm(func() x.y.z := 1)

0: Fi ndVar X
1: Push y.z
2: PushConst ant 1
3: SetPath 1
4: Return

SetVar

Set Var X

Assigns the value on the top of the stack to the local variable or paramater
namedX.

di sasm(func(x) x := 1)
0: PushConst ant
1. Set Var
2. Cet Var
3: Return

You can control the amount of information displayed with the Set Var
instruction by setting the value of the ver bose slot in the NSDPar anfr ame
frame, as described on page 7-24.

SetFindVar
Set Fi ndvar X

Assigns the value on the top of the stack to the variable that’s second on the
stack, using Fi ndVar to locate that variable.

Interpreter Instructions 7-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-30

CHAPTER 7

Extended Debugging Functions

This instruction implments X : = expr, where X is not declared as a local
variable.

di sasm(func() x := 1)

0: PushConst ant 1
1: Set Fi ndVar

2: FindVvar X
3. Return

You can control the amount of information displayed with the Set Fi ndVar
instruction by setting the value of the ver bose slot in the NSDPar anfr ame
frame, as described on page 7-24.

SetLexScope

Set LexScope

Sets the lexical scope (inherited locals and parameters) of the object on the
top of the stack to that of the currently executing function.

di sasm(func(x) func(y) x+y)

0: Push {#4413361}
1: Set LexScope
2: Return

Program Flow

This section describes the instructions that control program flow.

While and Repeat/Until Loops

Three branching operators provide most of the general program-flow
operations, including the implementation of whi | e and r epeat / unti |
loops.

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Branch

Branch [/

Causes the interpreter to continue processing at the instruction at offset I.

disasm(func() if x then true)

0: Fi ndVar X
1: Branchl fNi | 10
4: PushConst ant TRUE
7: Branch 11
10: PushConst ant NI L
11: Return

BranchT

BranchT /

If the top of the stack is non-ni | , causes the interpreter to continue
processing at the instruction at offset I.

di sasm(func() while x do y)

0: Branch 5
3: FindVar y
4: Pop
5: Fi ndVar X
6: Branchl f Not Ni | 3
7: PushConst ant NI L
8: Return

BranchF

BranchF I

If the top of the stack is ni | , causes the interpreter to continue processing at
the instruction at offsetl.

di sasn(func() if x then true)
0: Fi ndVar X

Interpreter Instructions 7-31

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

1: BranchlfNi|
4: PushConst ant

7: Branch

10: PushConst ant
11: Return

For Loops

10
TRUE
11

NI L

The f or loop implementation uses a triplet of integers (a loop counter, a
limit value, and a counter increment) as loop variables. The byte code
instructions increment the loop counter and determine if the loop is done.

The current value of the loop counter is identified by the name of the
variable; the increment and end values are identified by the suffixes | i ncr
and | | i mi t on the variable name. If the loop counter is i , for example, then
the other loop variables arei | i ncr andi |limt.

A simple branch exits the loop. Because the iterator counter and limit are
pseudo-local variables, nothing special needs to be done to clean them up on

breaks.

IncrVar

I ncrvar X

Increments the local variable or parameter named X by the amount at the top
of the stack and pushes the result onto the stack. This instruction doesn’t pop
the increment value, which remains on the stack.

di sasm(func() for x :
0:

7-32 Interpreter Instructions

QU R wNR

Fi ndVvar
Set Var
Fi ndVar
Set Var
Fi ndvar
Set Var
Cet Var

ato b by c do getappparans())

a
X
b
x| 1imit

X| i ncr
x| incr

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

7. GetVar

8: Branch

11: Push

12: Call

13: Pop

14: Get Var

15: I ncrVar

16: Get Var

17: Branchl f LoopNot Done
20: PushConst ant
21: Return

BranchlfLoopNotDone

X
16

' Get AppPar ans
0

x| incr
X

x| 1imt
11

NI L

Br anchl f LoopNot Done [

Determines if the loop is complete, using the top three elements of the stack
as the current loop variable, the loop limit, and the loop increment. If the
loop is not complete, this instruction branches to I.

di sasm(func() for x:= 0 to
0: PushConst ant

1: Set Var

2: PushConst ant
5. Set Var

6: PushConst ant
7. Set Var

8. GCet Var

9: Cet Var

10: Branch

13: Get Var

14: | ncrVar

15: GetVar

16: Branchl f LoopNot Done

Interpreter Instructions

9 do nil)
0

X

9
x[limt
1

x| incr
x| i ncr
X

15

x| i ncr
X
X|1imt
13

7-33

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

19: PushConst ant NI L
20: Return

Foreach Loops (Frame and Array Iterators)

The implementation of the foreach loop uses an “iterator” data structure that
tracks progress through the array. A frequently used function (number 17) is
used to create a new iterator for the object, and the instructions | t er Next
and | t er Done increment and test this iterator.

IterNext

I t er Next

Increments the array or frame iterator.

di sasm(func() foreach s, v in x do getappparans())

0: Fi ndvar X

1: PushConst ant NI L

2. Newliterator 2

5: Set Var sv|iter
6: Branch 22

9: Cet Var sv|iter
10: PushConst ant 1

11: Aref 2

12: Set Var \

13: Cet Var sv|iter
14: PushConst ant 0

15: Aref 2

16: Set Var S

17: Push ' Get AppPar ans
18: Call 0

19: Pop

20: Get Var sv|iter
21: |terNext

22. GCet Var sv|iter

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

23: |terDone
24: Branchl fNi | 9
27: PushConst ant NI L
28: PushConst ant NI L
29: Set Var sv|iter
30: Return
IterDone
|t er Done

Tests whether an array or frame iterator is complete and pushes result of the
test on the stack.

di sasm(func() foreach elt

Fi ndVvar
PushConst ant
Newl t er at or
Set Var
Branch
Cet Var
PushConst ant
Ar ef
Set Var
Cet Var
| t er Next
Cet Var
| t er Done
Branchl f Ni |
PushConst ant
PushConst ant
Set Var
Ret urn

Interpreter Instructions

in x do nil)

X
NI L
elt]iter
15
elt|iter
1
elt
elt]iter
elt|iter
9
NI L
NI L
elt|iter

7-35

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Exception Handling

The interpreter maintains a stack of exception-handler contexts, each of
which represents the dynamic scope of at ry/ onexcept i on statement for a
single function object.

A pair of handler instructions registers and removes contexts on the
exception-handler stack. When an exception occurs, the interpreter first
checks the object’s handlers and branches to one of them if appropriate.

NewHandlers

NewHandl ers N

Registers the top N pairs of elements on the stack as exception handlers for
the currently executing function. Within each pair of items, the second
(lowest) is the exception symbol and the first (highest) is the instruction
number to jump to to process that exception.

di sasm(func() try nil onexception |evt.ex.nsg| do true;
onexception |evt.ex| do 'foo)

0: Push 'evt.ex. msg
1: PushConst ant 16
4: Push "evt.ex
5: PushConst ant 22
8: NewHandl ers 2
9: PushConst ant NI L
10: PopHandl ers
13: Branch 26
16: PushConst ant TRUE
19: Branch 23
22: Push 'foo
23. PopHandl ers
26: Return

7-36 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

PopHandlers
PopHandl er s

Removes the most recently added set of exception handlers from the
exception-handler stack. (See NewHand! ers.)

di sasm(func() try true onexception |evt.ex| do 'foo)

0: Push "evt.ex
1: PushConst ant 14

4: NewHandl ers 1

5: PushConst ant TRUE

8: PopHandl ers

11: Branch 18

14: Push "foo
15: PopHandl ers

18: Return

Calling and Returning Functions

In NewtonScript, you can invoke the execution of a function in a number of
different ways:

= message sends
s conditional sends
» direct calls

To support these different calling strategies, the interpreter uses a number of
different instructions, documented in this section. The interpreter invokes the
Per f or mand Appl y functions as it would any other global function, that is,
with the Cal | instruction.

A single instruction controls function return.

The interpreter optimizes the calling of a few functions that are expected to
be called often. The section “Primitive Functions” beginning on page 7-40
describes the optimized functions.

Interpreter Instructions 7-37

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-38

CHAPTER 7

Extended Debugging Functions

Call

Call N

Executes the global function whose symbol is on top of the stack, passing N
elements on the stack as arguments.

di sasm(func() GCet AppParans())
0: Push ' Get AppPar ans
1. Call 0
2: Return

Invoke

| nvoke N

Executes the function on the top of the stack, using its closed-over message
context and passing the next N stack elements as arguments.

di sasm(func(x) call x with (y))

0: FindVar y
1. GetVar X
2: I nvoke 1
3: Return

This instruction is the same as Cal | , except that Cal | finds the name of the
global function on the top of the stack, and | nvoke finds the function itself
on the top of the stack.

Send

Send N

Sends the message on the top of the stack to the object that’s second on the
stack, passing the next N elements on the stack as arguments.

di sasn(func(x, y) x:nsg(y))
0: Get Var y
1. GetVar X

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

2: Push ' msgQ
3. Send 1
4: Return

SendIfDefined
Send| f Defi ned N

Attempts to send the message on the top of the stack to the object that’s
second on the stack, passing the next N elements on the stack as arguments.
If a full proto/parent lookup does not find the specified message in the
object, Sendl f Def i ned pushes ni | on the stack. This instruction is like
send, but it implements the : ? syntax.

di sasn{func(x, y) x:?msg(y))

0: GetVvar y
1. Get Var X
2: Push ' meg
3: Sendl f Defi ned 1
4: Return
Resend
Resend N

Sends the message on the top of the stack using the current message context,
passing the next N elements on the stack as arguments. The Resend
instruction starts searching for the method to invokein the proto slot, if any,
of the current implementor. This instruction implements the i nheri t ed:
syntax.

di sasnm(func() inherited: msg())

0: Push ' msgQ
1: Resend 0
2: Return
Interpreter Instructions 7-39

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

ResendIfDefined

Resendl f Def i ned N

Attempts to send the message on the top of the stack using the current
message context, passing the next N elements on the stack as argument. The
Resendl f Def i ned instruction starts looking for the method to invoke in
the proto slot, if any, of the current implementor. This instruction implements
thei nheri t ed: ? syntax.

Return

Ret urn

Returns from the function. The result of the function remains on the top of
the stack.

di sasn(func() nil);
0: PushConst ant NI L
1. Return

Primitive Functions

Some NewtonScript operations are not implemented directly as byte code
instructions but are defined as primitive functions—that is, operations that
are performed like function calls.

The primitive functions include

» elements of the NewtonScript language, documented in The NewtonScript
Programming Language

» functions used by the interpreter itself

The rest of this section lists the primitive functions, in this form:

7-40 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

Name NumberOfStackElements
Description
Example

Add

+ 2

Adds together the first two elements on the stack.

di sasm(func() x+y)

0: Fi ndVvar X
1: Fi ndVar
2. + 2
3: Return
Subtract
- 2

Subtracts the top element on the stack from the second element on the stack
and pushes the result.

di sasm(func() x-y)

0: Fi ndVar X
1: Findvar
2: - 2
3. Return
Multiply
* 2

Multies the first two elements on the stack.

di sasm(func() x * vy)

0: Fi ndVar X
1: FindVar
Interpreter Instructions 7-41

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-42

CHAPTER 7

Extended Debugging Functions

2. * 2
5. Return

Divide

/ 2

Divides the second element on the stack by the first.

di sasm(func() x / vy)

0: Fi ndVar X
1: Fi ndVar
2./ 2
5. Return
Div
Div 2

Divides the second element on the stack by the first and truncates the
remainder to a whole number.

di sasm(func() x div y)

0: Fi ndVvar X
1: Fi ndVar
2. Dv 2
5. Return
ARef
ARef 2

Dereferences an array or string, using the stack elements this way:
topOfStack| secondOnStack]

di sasm(func() x[y])
0: Fi ndVvar X
1: Fi ndVar

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

2:
3:

ARef
Ret urn

SetARef

Set ARef 3

Assigns a string or array.

di sasm(func() x[y]

0:

Fi ndVvar
Fi ndVvar
Fi ndVvar
Set ARef
Ret urn

Newlterator

Newl t er at or

2

Creates an iterator data structure for an object. This function supports
f or each loops.

di sasm(func() foreach elt

Fi ndVvar
PushConst ant
New t er at or
Set Var
Branch
Cet Var
PushConst ant
Ar ef
Set Var
Cet Var
| t er Next
Cet Var
It er Done

Interpreter Instructions

in x do nil)

X
NI L

elt|iter
15
elt|iter

1

elt
elt|iter

elt|iter

7-43

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

17: Branchl fNi | 9
20: PushConst ant NI L
21: PushConst ant NI L
22:. Set Var elt|iter
23: Return
Length
Length 1

Returns the number of elements in the array on the top of the stack.

di sasm(func() |ength(x))

0: Fi ndVar X
1: Length 1
4: Return

AddArraySlot

AddAr r ay Sl ot 2

Appends a new element onto an array.

di sasn(func() AddArraySlot(x, y))

0: Fi ndVvar X
1: Findvar y
2: AddArraySl ot 2
5: Return

Equals

= 2

Tests the top two elements on the stack for equality.

di sasm(func() x =vy)

0: Fi ndVvar X
1: Fi ndVar
7-44 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

2: = 2
3. Return

NotEquals

<> 2

Tests the first two elements on the stack for inequality.

di sasm(func() x <> vy)

0: Fi ndVar X
1: Fi ndVar
2. <> 2
3: Return
LessThan
< 2

Compares for inequality: Is the second element on the stack less than the
first?

di sasm(func() x < vy)

0: Fi ndVvar X
1: FindVar y
2. < 2
5. Return

GreaterThan

> 2

Compares for inequality: Is the second element on the stack greater than the
first?

di sasm(func() x > vy)

0: Fi ndVar X
1: FindVar y
Interpreter Instructions 7-45

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-46

CHAPTER 7

Extended Debugging Functions

2: > 2
5: Return
GreaterOrEqual
>= 2

Compares for inequality: Is the second element on the stack greater than or
equal to the first?

di sasm(func() x >=vy)

0: Fi ndVvar X
1: Fi ndVar
2. >= 2
5. Return
LessOrEqual
<= 2

Compeares for inequality: Is the second element on the stack less than or
equal to the first?

di sasn(func() x <=vy)

0: Fi ndVvar X
1: Fi ndVar
2. <= 2
5: Return
Not
Not 1

Tests the top element on the stack for ni | .

di sasn(func() not x)
0: FindVar X

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

1: Not 1
2. Return

BitAnd

BANnd 2

Performs a binary and on the first two elements of the stack.

di sasm(func() band(x, y))

0: Fi ndVar X
1: Fi ndVar
2: BANnd 2
5. Return
BitOr
BOr 2

Performs a binary or on the first two elements on the stack.

di sasm(func() bor(x, y))

0: Fi ndVvar X
1: Fi ndVar
2: BO 2
5. Return
BitNot
BNot 2

Performs a binary not on the first two elements on the stack.

di sasm(func() bnot(x, y))

0: Fi ndVvar X
1: FindVar
2: BNot 2
5: Return
Interpreter Instructions 7-47

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-48

CHAPTER 7

Extended Debugging Functions

Clone

Cl one 1

Makes a “shallow copy” of the object on the top of the stack.

di sasm(func() clone(x))
0: Fi ndVar
1: done 1
4: Return

SetClass

Set O ass 2
Sets the class of the object.

di sasm(func() Setd ass(X,
0: FindVar
1: Findvar
2: Setd ass 2
5. Return

Stringer

y))

X
y

Stringer 1

Concatenates strings, supporting the & keyword.

di sasm(func() x&y)
0: Fi ndVvar
Fi ndVar
Push
MakeAr r ay
Stri nger 1
Ret urn

R wDNR

di sasm(func() x&&y)
0: Fi ndvar

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 7

Extended Debugging Functions

1. Push .o
2: Fi ndvar y
3: Push "Array
4: MakeArray 3
5: Stringer 1
8: Return
HasPath
HasPat h 2

Checks for the existence of an object.

di sasm(func() X.y exists)

0: Fi ndVvar X
1: Push 'y
2: HasPath 2
5: Return

ClassOf

C assOr 1

Returns the class of the object on the top of the stack.

di sasm(func() CdassO(x))

0: Fi ndVvar X
1. dassOo 1
4: Return

Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

7-49

CHAPTER 7

Extended Debugging Functions

7-50 Interpreter Instructions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

You can use NTK to collect performance statistics on your functions and to
optimize selected functions for speed, as described in this chapter.

Chapter 6, “Debugging,” describes the functions you use to examine
memory use and drawing efficiency.

Measuring Performance

The profiler times selected functions as they execute on the Newton device.
The statistics are displayed at your request in the Inspector window on the
development system.

The profiler runs on any Newton MessagePad 120 or later model. To use the
profiler on an English-language MessagePad 100 or 110, install the
appropriate patch using the Newton Package Installer. The patches are
shipped with NTK in a directory named System Updates.

To collect performance statistics, you

Measuring Performance 8-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

» mark the functions you want to profile, as described in “Marking
Functions for Profiling” beginning on page 8-2

» select Compile for Profiling through the Project tab in the Settings dialog
box, as described in “Configuring the Compiler for Profiling” beginning
on page 8-4

» build and download the application

» turn on profiling on the Newton in the Toolkit application, as described in
“Configuring the Profiler on the Newton” beginning on page 8-6

» run the code to be profiled
» upload the statistics

When you're done profiling, be sure to turn off compiler profiling through
Project in the Settings dialog box. Before shipping your application, verify
that the release build does not contain profiling code.

Marking Functions for Profiling

You turn statistics collection on and off during execution by bracketing code
you want profiled with calls to the Enabl ePr of i | i ng function. You pass a
parameter of t r ue to turn profiling on, a parameter of ni | to turn it off. The
function returns the previous state of the profiler.

The following example shows a test method that retrieves and sorts an array,
in order to time the sorting function bubbl eSor t .

func(vector, size)

begi n
if kProfileOn then /1 Conpile for Profiling
/1l is set
| ocal pFlag := /'l save state;

Enabl eProfiling(nil); [l turn profiling off
clnitArray(vector); /1 don't profile init routine
if kProfileOn then

Enabl eProfiling(true); /1 turn profiling on
: bubbl eSort (vector, size); /1 execute bubbl eSort
8-2 Measuring Performance

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

if kProfileOn then /1 always check for profiling
Enabl eProfi |l i ng(pFl ag) ; /'l restore profiler state
end

The Enabl ePr of i | i ng function is available only when Compile for
Profiling is enabled, which you can test by checking the value of the

kPr of i | eOn constant. By testing the constant before making any calls to
Enabl eProf i | i ng, you can leave profiling code in place in your source
code. (When the compiler evaluatesi f kProfil eOntonil, itstrips the
statement from its output.)

The profiler records and times all functions that are executed between the
time profiling is turned on and the time it’s turned off, including functions
that are called indirectly. In this example, the profile reflects the execution of
the bubbl eSor t method and any other functions it invokes. Each function
appears separately in the profile.

Suppose, for example, that bubbl eSor t in the above example is defined as

func(vector, size)

begi n
local i, j, elenent;
for i :=0 to size-2 do
begi n
for j :=0to size-i-2 do
begin
if vector[j+1] < vector[j] then
: Swap(vector, j, j+1);
end;
end;
end;

The time reported for bubbl eSort does not include time spent in the Swap
method, which is reported separately, as illustrated in Figure 7-1.

Measuring Performance 8-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

Figure 7-1 A performance profile
srrrrrrrrr Profiling Resultis 427595 9:48 AM

Total Profiling Time: 739 milliseconds
User Functions: 74138 3 functions profiled (detailad>
System Calls: 25,838 190 functions profiled Caggregatel

B Profiling Time Entries Time Function Hame
52,378 1 387 mainSorting. t, sortingliew.bubbleSort
21.388 21 158 mainSorting. t, sortinglliew.Swap
0.41% u} 3 mainSorting. t, runTest. TimeBubbleSort

“Interpreting a Profile” beginning on page 8-8 describes the display.

The profiling itself adds a disproportionate amount of execution time to
functions compiled into native code. You can reduce the impact of profiling
by collapsing the reports of native functions that call other native functions,
as described in “Profiling Native Functions” beginning on page 8-19.

NTK keeps one set of statistics on the Newton. You may add to the statistics
with paired calls to Enabl eProfi | i ng.

Configuring the Compiler for Profiling

You instruct the NTK compiler to embed profiling code in its output through
the Project Settings dialog box, illustrated in Figure 7-2.

8-4 Measuring Performance

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

Figure 7-2 The Project Settings dialog box

Newton Toolkit

Application I Package | Project | Output |

Platform; MSGRAD

Language: |English

Compile for
¥ Compile for Debugging ™ Compile for Brofiling Profiling
[lgnare Mative Keywaord [| Erafile Hative Functiohs
W Check Global Function Calls [Mewton 2.0 Only
[MTE 1.0 Build Fules ¥ Faster Furetinrs (20 Gl
¥ Usze stepChildren Slot [¥ | Tiatter Hhject Facking (2.0]

™ Suppress Byte Code

ak I Cancel Spply | HElF |

Check Compile for Profiling to turn profiling on. While Compile for Profiling
is checked, the compiler assigns each function in the application a unique
identifier, which it maps to the source code, and it recognizes the calls that
enable and disable profiling. You can test for profiling by checking the

kPr of i | eOn constant, which is true when Compile for Profiling is checked.

The Profile Native Functions option instructs the compiler to embed
profiling code even in functions that have been compiled into native code. As
described in “Profiling Native Functions” beginning on page 8-19, the
process of profiling adds significant distortion to native functions. If this
option is not checked, NTK compiles native functions as it would in an
ordinary build, with the result that the profiler can’t distinguish a native
function called from within another native function. A profile generated with
this option unchecked shows only the native functions that were called

Measuring Performance 8-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

directly from interpreted functions. The times reported include processor
time spent in any other native function calls.

Configuring the Profiler on the Newton

You control profiling on the Newton through the Profile Control view,
illustrated in Figure 7-3, which you reach by tapping Profile Control in the
Toolkit application.

Figure 7-3 Profile Control on the Newton

[Begin Profiling Run]

G) &

To configure the profiler, choose Prefs from the Info pop-up menu in the
lower-left corner of the view, as illustrated in Figure 7-4.

Figure 7-4 Profiler Info

8-6

Profile Control

Begin Profiling Run]

Choosing Prefs displays the Profiler Settings view, illustrated in Figure 7-5.

Measuring Performance

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

Figure 7-5 Profiler Settings on the Newton

Profiler Settings

#Buffer Size 4K

7% Detail Syetern Calls

3]

The Buffer Size setting lets you specify the amount of Newton memory
devoted to statistics storage. The profiler needs at least 4K of RAM. It's best
to keep the allocation as small as possible, to minimize impact on the
Newton, but you can increase it if you need to. If the profiler runs out of
storage space, it turns itself off and reports that the results are incomplete.

The Detail System Calls checkbox instructs the profiler to track system calls
as thoroughly as it tracks your own functions. When this box is not checked,
the profiler reports only the total number of system call invocations and the
percentage of profiling time they represent. When this box is checked, the
profiler tracks and reports system calls individually. It tells you how often
each was executed and how much processor time it took.

Collecting Statistics

When you’'ve compiled an application for profiling and downloaded it, you
set up the Newton for profiling through the Toolkit application.

= Open the Toolkit by tapping its icon in the Extras drawer.

= If there is not already an Inspector connection open, open one.

= Tap Profile Control to open the profiler view

= Tap Begin Profiling Run

= Execute the application to be profiled

= Tap Upload Results to display the statistics in the Inspector window.

Measuring Performance 8-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

If you need the screen space, you can close the Toolkit application once
you’ve tapped Begin Profiling Run. When you’re ready to upload the
statistics, open the Toolkit application again and tap Upload Results.

Interpreting a Profile

The first part of the profile provides a summary of the profiling:

= the total execution time spent in profiling

» the number of user functions profiled and the percentage of profiling time

they represent

» the number of system calls profiled and the percentage of profiling time

they represent.

If garbage collection was performed during the profiling run, an entry for it
appears in the summary. If system functions created closures during the
profile, the total time spent in these closures is reported in an entry labeled

Other.

If there were calls from a native function to an interpreted function, those
calls are reported on the last line of the summary, as illustrated in Figure 7-6.

Figure 7-6 A performance profile
sryrrrryr Profiling Results 4/27/93 9:49 AN

Total Profiling Time: 1699 milliseconds
User Functions: 58 . 3298 7 functions profiled Cdetailed?
System Calls: 41. 618 192 functions profiled Caggregatel
Hative to MS: 21 calls

Profiling Time Entries Timz Function Home
22 428 1 281 mainSorting. t, sortingliew. bubbleSort
21,198 162 360 mainSorting. t, sortingliew. Swap
8,828 1 130 mainSorting. t, sortingliew.mixedBubbleSort
5.59% 1 a5 mainSorting. t, sortingliew. natiwveBubbleSort
0. 128 u} 2 mainSorting. t, timeBubbleSort. buttoncC|ickScript
0. 128 u} 2 mainSorting. t, timeMativeBubble. buttonClickScript
0. 128 u} 2 mainSorting. t, timeMixedBubble. buttonC|ickScript

8-8

Measuring Performance

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

The second part of the profile lists the profiled functions in descending order
by the amount of processor time each used while profiling was enabled.
Figure 7-6 illustrates the profile of three variations on the bubbl eSor t
example used in “Marking Functions for Profiling” beginning on page 8-2.

The Entries column reports the number of times the function was executed.
A zero in this column reflects a function that occupied processor time while
profiling was in effect but whose entry point was not logged—that is, a
function that was started before profiling was enabled but whose execution
occupied some processor time during profiling, like the

butt onCl i ckScri pt methods for the buttons that triggered the profiling
tests in the example in Figure 7-6.

The Time column reports the total processor time, in milliseconds, used by
the function.

The profile identifies by name functions defined in the template files.
Functions defined in text files (with the Def i ned obal Const ant function,
described in “Defining Global Constants” beginning on page 4-37) appear
under the name of the text file, with a number if necessary. If a text file
named projectData defines a single profiled function, for example, the
function appears in the profile with this name:

proj ect Dat a. t ext

If a text file named projectData defines two profiled functions, they appear in
the profile under these names:

projectData.text.1
proj ect Data. text. 2

The profiler identifies an anonymous nested function by appending an
integer to the path name of its parent. Consider, for example, a function in a
slot named nyf unc:

func()
begi n
| ocal pos := ArrayPos(cardSoups, soupNane, O,
func(x,y) dassO(y) =
Measuring Performance 8-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

"String and StrEqual (x,Y));

end

The fourth argument to Ar r ay Pos is an anonymous function, which appears
in the profile as myLayout . nyVi ew. myFunc. 1. A second anonymous
function within myFunc would appear with the name

nyLayout . myVi ew. myFunc. 2, and so on.

The reporting of native functions depends on the setting of the Profile Native
Functions option in the Project tab in the Settings dialog box, as described in
“Profiling Native Functions” beginning on page 8-19.

The profiler depends on tables created during the build to match the
functions profiled on the Newton with their names in the source files. Once
you've shut down NTK, you must rebuild and download the application
again before you can match newly collected statistics to the source code.

Compiling Functions for Speed

8-10

You can instruct NTK to compile individual functions into native code—that
is, the machine language used by the ARM processor. By default, NTK
produces machine-independent byte code to be processed by the
NewtonScript interpreter.

The native version of a function can execute many time faster than the byte
code version, but it is also many times larger. For the most effective balance
between speed and size, compile only the most frequently used functions—
or the most time-critical—into native code.

You can turn native compiling on or off for a build through the Project
Settings item in the Project menu. For compatibility with future platforms,
NTK places in the application both the byte code and the native code
versions of marked functions. You can reduce the size slightly—at the
expense of future incompatibility—by suppressing the byte code through
Project Settings.

Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

To mark an individual function for native compiling, construct it with the
nat i ve keyword:

func native (paramList) expression

The function

func (a, b, c)

for example, becomes

func native (a, b, c)

If native-code compiling is turned off through Project Settings, NTK ignores
the word nat i ve in the function statement. The native keyword is ignored
in the Inspector.

Note that native functions are not locked and are therefore not safely put in
the heap. Don’t deep clone a native function and then execute it.

A function compiled into native code can have no more than five arguments.

Declaring and Typing Variables

To get the fastest performance in a native function, declare all local variables
and specify the types of variables whenever possible.

Native code uses the same mechanism as the interpreter to look up inherited
variables and undeclared local variables. Both the native compiler and the
interpreter are much more efficient when handling declared local variables.
Always declare all local variables, either explicitly with the | ocal statement
or implicitly with a f or or f or each loop.

You can type your local variables by placing a specifier in the | ocal
statement, between the keyword | ocal and the name of the first variable.
For example:

local int x, y := 13;
| ocal array a;

All the local variables defined in one statement are of the specified type.

Compiling Functions for Speed 8-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

8-12

CHAPTER 8

Tuning Performance

NTK recognizes two type descriptors:
= i nt, which specifies an integer
» array, which specifies an array reference.

Local variables you create without a type descriptor are allowed to hold any
kind of value.

You can type function arguments by inserting a type before the argument’s
name in the function statement:

func native (int a, b, array c)

In this example, the argument a is an integer, b is untyped, and c is an array
pointer.

The advantages of typing variables arise when the compiler can optimize an
operation using the known types of the operands. Notably, arithmetic
operations on i nt expressions are much faster than on untyped expressions.

Specifying a type for a variable restricts the values it can contain. The
generated code is type-checked at run time when checking is necessary to
ensure that typed variables contain values of the correct type—that is,
whenever a result of a broader type is assigned to a variable of a narrower
type. For example,

I ocal int i:= SomeFunction();

generates a run-time check to ensure that SomeFunct i on returns an integer.
No checking is required, however, in the subsequent assignment

local int j :=1i;

because i is guaranteed to contain an integer.

The index variables in a f or loop are automatically declared as integers. If
an index variable is also declared with a different type or without a type in a
| ocal statement, the compiler issues a warning and uses the broader type.
For example:

Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

func native ()
begi n

local i;

for i :=11to 10 do nil;
end

The compiler issues a warning and uses an untyped variable to hold the
value of i .

Stepping Through an Array

Anative f or loop is much faster than a native f or each loop for stepping
through an array.

Handling Exceptions

The system software maintains separate exception stacks for native and
interpreted execution. A native function called from within a non-native
function’s onexcept i on block, therefore, cannot use the

Cur r ent Except i on function to access the exception being handled by the
non-native function. A native function can call Cur r ent Except i on only
from within its own onexcept i on block.

The NewtonScript Programming Language describes exception handling and
the Cur r ent Except i on function.

Calling Other Functions

Byte code is executed by the NewtonScript interpreter; native functions are
executed directly by the processor. Because each has its own stacks and
registers, transitions between the two execution environments affect
performance.

In general, the NewtonScript interpreter can call a native function and then
return with little overhead. When a native function is executing, however, a

Compiling Functions for Speed 8-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

8-14

CHAPTER 8

Tuning Performance

call to an interpreted method invokes the relatively slow process of starting
up the interpreter.

The full impact of calls between different function types also depends on
how the call is made.

Calling Options

In NewtonScript, functions can be called in three different ways: globally,
with the cal | /wi t h syntax, or with a message send.

Global Function Call

You can call a global function directly by name. For example,

Ref reshVi ews() ;

When executing a global function call, the system looks up the function by
name and then executes it.

NTK provides an optimized dispatch mechanism that bypasses the lookup
when you call certain common utility functions from within a native
function. These functions” locations are known at compile time, and they are
executed directly. The functions cannot therefore be redefined at run time (a
practice that is possible but discouraged).

Table 7-1 lists the optimized functions.

Table 7-1 Utility functions optimized for calling as global functions from a native
function

AddArraySlot DeepClone IsInstance StuffByte

ArrayMunger Downcase IsString StuffChar

ArrayPos EndsWith IsSubclass StuffCString

Band Ensurelnternal IsSymbol StuffLong

BeginsWith ExtractByte Length StuffPString

Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

BinaryMunger ExtractBytes ReplaceObject StuffUniChar
Bnot ExtractChar SetClass StuffWord
Bor ExtractCString SetLength StuffXLong
Bxor ExtractLong Sort Substr
Capitalize ExtractPString StrMunger TotalClone
CapitalizeWords ExtractUniChar StrPos TrimString
ClassOf ExtractWord StrReplace Upcase
Clone ExtractXLong

Call/With Syntax

You can call a function with the cal | and wi t h keywords. For example,

call nyFunction with (x, y);

When the system executes a function called with this syntax, it can skip the
function lookup and thus complete the call faster.

This syntax saves time as long as the function expression is simple—if, for
example, you call the function with a local variable or a constant. You can
use the constants supplied in the platform files with the cal | /wi t h syntax,
as described in “Platform Files” on page 4-30.

One of the standard NewtonScript optimization strategies is to cache a global
function that’s called from inside a loop in a local variable to avoid repeated
lookup. For example:

local fn := function. Soned obal Functi on;
for i := 1 to 100000 do call fn with (x, y);

Message Send

You can send a message that causes a function to execute. For example,

Compiling Functions for Speed 8-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

8-16

CHAPTER 8

Tuning Performance

sel f: myFunction(x, y);

The send operation looks up the message in the receiver’s inheritance chain,
and then performs a variation on a function call. The function execution itself
is essentially the same speed as cal | /wi t h, but the lookup is generally
more complicated and thus slower.

Timing Interactions

The native NewtonScript compiler normally generates code that tries to
eliminate as much overhead as possible. The code determines at run time
whether a function being called is native and if it is, bypasses the
interpreter’s function-call operation.

The price of this optimization is that a call from one native function to
another is invisible to both the profiler and the tracing system. You can force
these calls through the interpreter—to make them available for profiling and
tracing—by checking the Profile Native Functions option in Project Settings,
as described in “Configuring the Compiler for Profiling” beginning on

page 8-4.

Table 7-2 shows the operations required to do all combinations of function-
call operations and function-type transitions. The table uses these operation
codes:

s II—the interpreter’s calling an interpreted function
s IN—the interpreter’s calling a native function
= NN—a direct native function call

= O— an optimized native function call, that is, a call from a native function
to one of the optimized functions listed in Table 7-1

» GL—a global-function lookup
= ML—a message lookup
s Sl—starting up the interpreter

Calls from native functions to native functions are fastest; the operations
have these relative speeds:

Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

O<NN<IN<II

Thus, it's quicker to call even a non-optimized native function from another
native function than to call a native function from an interpreted function.

Table 7-2 Function call operations
Calling an Calling a Calling an Calling a
interpreted native interpreted native
function from function from function from function from
an interpreted an interpreted a native a native
function function function function
Call/with II IN SI+1I NN
Global GL+1I GL+IN GL + SI+ 11 GL + NN
Optimized global always native GL+IN always native o

Message send

ML +1I ML + IN ML + SI+ 1T ML + NN

Figure 7-6 on page 8-8 illustrates the combined profile of a function executed
in three variations:

= an interpreted function (bubbl eSor t) that calls another interpreted
function (Swap)

= anative function (nat i veBubbl eSor t) that calls another native function
(which doesn’t show up in the profile)

= anative function (m xedBubbl eSor t) that calls an interpreted function
(Swap).

An Optimization Example

Suppose you've found through profiling that you're spending a lot of time in
this binary search function (which searches array a for entry k):

func (a, k)
begi n

Compiling Functions for Speed 8-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

8-18

CHAPTER 8

Tuning Performance

local low:= 0, high := Length(a)-1, md;
while high >= [ow do
begi n
md:= (low + high) div 2;
if afmd] >k then high := nmd- 1
else if a[md] <k thenlow:=md + 1
el se return md;
end;
nil;
end;

The first optimization is to have the function compiled into native code by
inserting the keyword nat i ve.

Because this function performs a number of integer operations, typing the
variables is also straightforward. Argument a is an array; the local variables
| ow hi gh, and mi d are integers. The function with the native keyword and
the type declarations looks like this:

func native (array a, k)
begi n
local int low:= 0, high := Length(a)-1, md;
while high >= | ow do
begi n
md:= (low + high) div 2;
if afmd] >k then high :=nmd - 1
else if a[md] <k thenlow:=md + 1
else return md;
end;
nil;
end;

As it is now, the function can be used to search arrays of anything that can be
compared with the < and > operators. If you know you’re searching for an
integer in an array of integers, you can also type the k argument.

Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

Finally, you can look for optimizations in the code itself. Note, for example,
that this function accesses a[mi d] twice when a[mi d] is less than or equal
to K. You can save a little bit of time by putting a[mi d] in a local variable.

The function with these last two optimizations in place looks like this:

func native (array a, int k)
begi n
local int low:= 0, high := Length(a)-1, md;
| ocal int val ue;
while high >= | ow do

begin
md := (low + high) div 2;
value := a[md];
if value > k then high :=md - 1
else if value < k then low:=md + 1
el se return md;
end;
nil;
end;

In timings of the stand-alone functions searching an array of the numbers
from 0 to 999, with k set to 501, the optimized function ran in one
one-thousandth the time of the original function. Functions that manipulate
symbolic data—copying strings or frames, for example—are unlikely to
realize improvements of this magnitude through the use of the native
compiler.

Profiling Native Functions

The tracking itself adds a disproportionate amount of time to the execution
of native functions called from other native functions. The profiler therefore
gives you the choice of compiling native functions for accurate execution
time or compiling them for detailed profiling.

Compiling Functions for Speed 8-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

If you leave the Profile Native Functions option unchecked in Project
Settings, the profile shows only the native functions that are called from
interpreted functions—the time for each includes any time spent executing
other native functions. If you enable that option, all native functions appear
in the profile, but the times are distorted.

Consider, for example, the bubbl eSort method used in “Marking
Functions for Profiling” beginning on page 8-2. The bubbl eSort method
itself calls a function named Swap.

If the Swap method is also compiled native, and you have not checked the
Profile Native Functions option, only the bubbl eSor t method appears in
the profile, as illustrated in Figure 7-7.

Figure 7-7 A profile of a native function calling another native function, without
native-function profiling

rrrrxxrrr Profiling Resultis 42505 10:21 PH
Total Profiling Time: 91 milliseconds
User Functions: 100, 00 2 functions profiled (detailed?

Feferencing ROM Maps:1.3 444217 for detailed system calls

B Profiling Time Entries Time Function Hame
a7 . 208 1 g9 mainJorting.t, sortingliew.nativeBubbleSort
2,208 u] 2 mainSorting. t, timeMativeBubble . buttonClickScript

If both methods are compiled native, and you have checked the Profile
Native Functions option, both functions appear in the profile, as illustrated
in Figure 7-8.

8-20 Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

Figure 7-8 A profile of a native function calling another native function, with
native-function profiling

sreryiryy Profiling Results 4/25/95 10:33 PH

Total Profiling Time: 236 milliseconds
User Functions: 100, 00F 3 functions profiled (detailed?

Referencing ROM Maps: 1.3 4442170 for detailed system calls

B Profiling Time Entries Time Function Hame
49 588 1 117 mainSorting. t, sortingliew. nativeBubbleSort
49 . 588 a1 117 mainSorting. t, sortingliew. nativeSwap
0.858 0 2 mainSorting. t, timeMativeBubble. buttonClickScript

The increased execution time reflects the use of the interpreter’s function-call
operation, which is necessary to make the call visible to the profiler. The
impact is much like that of calling an interpreted function from a native
function, as described in “Timing Interactions” beginning on page 8-16.

Compiling Functions for Speed 8-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 8

Tuning Performance

8-22 Compiling Functions for Speed

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

This chapter describes the commands available through the NTK menus.

File Menu

You use the File menu to create, save, print, and otherwise manipulate files.

New Layout (Ctrl-N)

Opens a new, untitled layout window.

You use this command to start a file to hold templates for your application’s
views. You name the file when you save it.

“Drawing, Resizing, and Moving Views” beginning on page 5-4 describes
how you lay out views in a layout file. “Layout Files” beginning on page 4-3
describes how you use layout files in a project.

File Menu 9-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

9-2

CHAPTER 9

NTK Commands

New Proto Template (Ctrl-T)

Opens a new, untitled proto layout window.

You use this command to lay out your own protos. You name the file when
you save it.

“Creating User Protos” on page 5-16 describes user protos.

New Text File

Opens a new, untitled text file.

You use text files to hold an application’s install and remove scripts and any
other NewtonScript code that’s outside the scope of the view templates.
“Text Files” beginning on page 4-31 describes how you use text files in a
project.

Open (Ctrl-O)

Opens a browser window on a saved layout file or a text-edting window on
a saved text file. The Open command displays a dialog box through which
you specify the file to be opened.

Shortcut: Double-click a file in the project window to open it for editing.

You open a project file the Project menu. You open layout windows and the
Inspector window through the Windows menu.

Link Layout

Brings an external layout file into the local hierarchy, by linking the external
file to a linked subview template selected in a layout window. The Link
Layout command displays the standard get-file dialog box for identifying the
external layout file.

“Linking Multiple Layouts” beginning on page 5-14 describes linked layouts.

File Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Close (Ctrl-W)

Closes the active window and its associated file.

If you close a window whose file has been edited since it was last saved,
NTK displays a dialog box that gives you a chance to save changes before
closing the window.

Save (Ctrl-S)

Saves the file associated with the active window. The saved file replaces the
previously saved file of the same name. The file remains open.

The Save command affects only the one active window, that is,
= the layout file for the active layout window,

= the layout file for the active browser window,

= the project file associated with the project window

= the Inspector file, or

s the active text file.

Save As

Saves a new copy of the file associated with the active window. The Save As
command opens a file-save dialog box, through which you specify the new
name and location. Save As changes the name of the active window and
closes any open file with the window’s previous name.

You use Save As to name or rename a layout file and to create a new file.

Save All (Ctrl-M)

Saves all open NTK files, that is, any text or layout files, the project file, and
the Inspector file. If you've not yet saved a file associated with one of the
windows, NTK prompts you for the necessary filename.

File Menu 9-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Revert

Restores the last saved version of the file associated with the active window.
Any changes you've made since the last save are discarded.

Print Setup

Displays the Print Setup dialog box, which lets you specify the paper size
and page orientation for printing.

Print One

Prints one copy of the file associated with the active window on the printer
already selected through the Chooser. This command prints without
displaying the Print dialog box for your verification.

Print (Ctrl-P)

Displays the print dialog box, which identifies the selected printer and lets
you verify or change the printing options. Clicking OK in the print dialog
box triggers the printing of the current document according to the settings.

Exit

Closes all open files and quits the Newton Toolkit. If you have made changes
since saving any open files, NTK prompts you to save or discard the changes
before closing the files.

Recent File

Maintains a list of the four most recently opened files.

File Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Edit Menu

You use the Edit menu to manipulate the contents of a window—editing
views in a layout window, for example, or text in a browser window.

Undo (Ctrl-2)

Cancels the last change made in the active window.

If NTK cannot undo the last operation, this command reads Can’t Undo and
is disabled. You cannot undo changes to a slot after you've applied them.

Redo (Ctrl-A)

Reverts the change made by the previous Undo command. If NTK cannot
redo the last operation, this command is disabled.

Cut (Ctrl-X)

Deletes the current selection in the active window and places it on the
Clipboard. You can then paste the material elsewhere. (Cut replaces anything
previously copied or cut to the Clipboard.)

Copy (Ctrl-C)

Places on the clipboard a copy of the current selection in the active window.
You can then paste the material elsewhere. (Copy replaces anything
previously copied or cut to the Clipboard.)

Paste (Ctrl-V)

Pastes the contents of the Clipboard at the current insertion point.

Edit Menu 9-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

9-6

CHAPTER 9

NTK Commands

If you're pasting into a layout window, Paste places the contents of the
Clipboard inside the selected view.

Clear (Delete)

Deletes the current selection without placing the material on the Clipboard.

Duplicate (Ctrl-D)

Makes a copy of the currently selected view or views and places the copy in
the same parent view.

Shift Left

Shifts selected text or the line containing the insertion point one tab stop to
the left.

Shift Right

Shifts selected text or the line containing the insertion point one tab stop to
the right.

Select All (Ctrl-A)

Selects everything in the active window (that is, all views in a layout
window, all text in an editor, or all files in a project window).

Select Hierarchy

Selects all child views of the selected view or views in a layout window.
Selection continues down the hierarchy to the last child view.

Edit Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Select in Layout

Selects the view in a layout window that corresponds to the currently
selected view template in a browser. To use the Select in Layout command,
first select a template in a browser template list.

Shortcut: Double-click on a template name in a browser window to select the
corresponding view in an open layout window for the same file.

You can also use Select in Layout to select invisible or hidden views.

Search (Ctrl-R)

Finds and lists instances of a string in the active layout file or in all layout
files in a project. The Search command displays a dialog box, illustrated in
Figure8-1, in which you specify the string you want to find and select search
specifications.

Figure8-1 The dialog for searching with Search

Seach |

_—
: " Layout: Hello ﬂl
Search in: ;
" Project: Hello
" Frame "w/ith M ame ™ Match whole Yword Oy
= Slot 'with Mame ™ Match Case
' Textin Slat
L |

“Searching Template Files” beginning on page 5-25 describes the settings in
the Search dialog box.

Edit Menu 9-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Find (Ctrl-F)

Finds a string in the active text window.

The Find command displays a dialog box, illustrated in Figure0-1, in which
you specify the text you're interested in and a pair of search specifications.

Figure0-1 The dialog for searching with Find

9-8

Find

Find what: |l Eind

Cancel

i

I Match whole word Ornly
™ Match Case

The Find command is available only when a text window is active or a text
slot is open for editing.

“Searching the Active Window” beginning on page 5-26 describes the Find
dialog box.

Find Next (Ctrl-G)

Finds the next instance of the last string specified through the Find
command, which is documented in “Searching the Active Window”
beginning on page 5-26.

Find Inherited

Finds the first occurrence of the currently selected slot in the parent view
template hierarchy. The Find Inherited command is available only when a
browser window is active.

Edit Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

The Find Inherited command looks first in the parent of the selected
template. If NTK doesn’t find the selected slot there, the search continues up
the parent hierarchy to the file’s layout view (that is, NTK does not search
across linked layouts). When it finds a slot with the same name as the
selected slot, NTK opens another browser window, with the slot and its
template selected. If it doesn’t find the slot in any template in the local
hierarchy, NTK sounds the system beep.

Newt Screen Shot

Places a bitmap of the Newton screen on the Clipboard. This item is available
only when the Inspector is connected.

Toolkit Preferences

Displays the Toolkit Preferences dialog box, illustrated in Figure8-2, through
which you set various characteristics of the Toolkit.

Figure8-2 The App preferences of the Toolkit Preferences dialog box
Mewton Toolkit
App l Layout I Browsers I T et Yiews I Packages | Heaps I
¥ Show the Standard T oalbar Al Toolbars —————
v Show the Layout Toolbar ’7[5 Show Tooltips ‘

V¥ Show the Inspector Toolbar

0] 4 I Cancel Spplr HElD

Edit Menu 9-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

When you click OK, NTK stores your current settings in a file named
Newton Toolkit Preferences in the system Preferences directory.

The fields in the Toolkit Preferences dialog box are described in “Toolkit
Preferences” beginning on page 4-19.

9-10

Figure8-3 The Layout preferences of the Toolkit Preferences dialog box
Hewton Toolkit
App | Layout | Bronzers I T et Views I Packages I Heaps |

Aurron keys Move By: |1
Size: |MessageF'ad "I Wiith Shift Kew: |5

OF, I Cancel Spply Helg

Edit Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-4 The Browsers preferences of the Toolkit Preferences dialog box

Mewton Toolkit E2

App I Layout | Browsers | Tent Yiews I Fackages I Heaps |
Wiew List
Sort By: (N Eont |

Slot Lizt

Sort By IName ;I Fant |

[Show Slot Value

ak. I Canicel | e[t | HElR

Edit Menu 9-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-5 The Text Viewspreferences of the Toolkit Preferences dialog box

Hewton Toolkit E

App I Lawout I Browszers | Text Views | Packages I Heaps |

Tabs: IE_ Fort I

ak I Canicel Spply Helg

9-12 Edit Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-6 The Packages preferences of the Toolkit Preferences dialog box

Mewton Toolkit E2

App I Layout | Browsers I Tent Yiews | Packages | Heaps |

Connection;
Tvpe: ISeriaI 'l Part: ||:0m1: 'l

¥ ‘Auta Save Before Building Packags
[T &uto Download After Building Package

ak. I Canicel e[t HElR

Edit Menu 9-13

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-7 The Heaps preferences of the Toolkit Preferences dialog box

Hewton Toolkit E

App I Lawout I Browszers I Tent Views I Packages | Heaps |

Sizes in KBuytes

W ait Heap: Im Build Heap: 500

Changes to Main Heap take effect after relaunching

ak I Canicel Spply Helg

9-14 Edit Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Project Menu

You use the project menu to manage your application project.

New Project

Creates and opens a new project file and opens a project window.

The project file contains project specifications and the list of files that make
up the project, that is, the files that NTK processes during the build.

“Project File” beginning on page 4-2 describes the project file.

Open Project

Opens an existing project file. You can have only one project open at a time.

Add Window

Adds to the project the file associated with the active window.

Add File

Adds a file to the project from anywhere on the desktop. The Add File
command displays a dialog box through which you specify the name and
location of the file.

Remove File

Removes the selected file or files from a project.

Project Menu 9-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

9-16

CHAPTER 9

NTK Commands

Update Files

Verifies that all entries in the project file can be resolved to files that currently
exist. When it can’t resolve an entry, NTK displays a dialog box, through
which you identify the correct target file.

You use Update Files to update the project file when you’ve moved or
renamed a file since adding it to a project.

Build Package (Ctrl-1)

Builds a project—usually a package—from the files and specifications in the
open project file.

NTK places the package file in the same folder as the project file. The name
of the package file is the name of the project with the suffix . pkg.

If the Output option in the Output Settings dialog box is set to Stream file,
NTK builds an object stream file and places it in a file with the name of the
project and the suffix . st ream

You can rename the output file.

The section“Building a Project” beginning on page 4-28 describes how NTK
builds a project.

Download Package (Ctrl-2)

Downloads the package file for the open project to a Newton device.

You must install the Toolkit application on the Newton, as described in
Chapter 1, “Installation and Setup,” before you can download a package to it.

Export Package to Text

Writes the contents of the project data file and all files in a project into a text
file. The name of the file is the project name with the suffix . t xt .

You can open this file in any application that recognizes text files.

Project Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Install Toolkit App

Installs the Toolkit application on a Newton PDA connected to the
development system.

The Toolkit application handles the downloading of packages and supports
the Inspector and performance profiler.

Chapter 1, “Installation and Setup,” describes how to set up a connection
between the development system and the PDA prior to downloading the
Toolkit application.

Mark as Main Layout

Designates the selected file in the project window as the main layout file—
that is, the layout file whose base view is the application base view.

This item applies only to application projects, that is, projects configured to
produce a new part of type f orm

Process Earlier (Ctrl-Up Arrow)

Moves the selected file in the project window one place closer to the
beginning of the build list.

Process Later (Ctrl-Down Arrow)

Moves the selected file in the project window one place closer to the end of
the build list.

Settings

Displays the Settings dialog box, illustrated in Figure8-8, through which you
establish the application, package, project, and output specifications
described in “Project Settings” beginning on page 4-12.

Project Menu 9-17

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-8 The Application Settings panel of the Settings dialog box

9-18

= MNewton Toolkit

Hello:TUT [x]

EZr—

Project Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-9 The Package Settings panel of the Settings dialog box

= Newton Toolkit

Application | Package | Project I Output I

Narne: IHeIIo:SIG

X Delete old package on download
[Copy pratected

[Auto remove package

r s i

[® Faster Compression

LCopyright;
I 21359319935 Apple Computer, Inc. All rights rezerved.

Werzion: |1

I 1] l | Cancel I | Apply I | Help I

Project Menu 9-19

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-10

9-20

The Project Settings panel of the Settings dialog box

Mewton Toolkit E

A pplication

Blatform: 15 GERAD

Languange: IEninsh

W Compile for Debugging ™ Compile for Profiling

™ lgnore Mative Kewsord = | Frafile Wative Functions

v Check Global Function Call: [Newton 2.0 Only

[T NTK 1.0 Build Rules [Faster Funetions (200Gl

W Use stepChildren Slat [¥ | Tichiter bieet Fackia (20 Wl

[Suppress Byte Code

I Package | Project I kot I

Ok I Cancel Sl HElR

Project Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-11 The Output Settings panel of the Settings dialog box

= Newton Toolkit

Application I Fackage | Project | Dutput I
FOutput
) Application) Stare Part
) Book) Stream File
) futo Part & Custom Part; Imine
Resulk:
myPartFrame]

[T Mew-Style Stores [Newton 2.0 only)

I 1] l | Cancel I | Apply I | Help I

Layout Menu

You use the layout menu to control the layout environment and manipulate
views in the layout window.

Layout Menu 9-21

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Layout Size

Displays a dialog box, illustrated in Figure8-12, that lets you set the size of
the layout.

Figure8-12 The Layout Size dialog box

9-22

size: [=]

Custom

Width: [0
e

Cancel

Height:

If you choose a platform from the Platform drop list, NTK fills in the width
and height from the information in the platform file. If you choose Custom
from the drop list, NTK lets you set your own values for the width and
height of the layout in pixels.

Autogrid On

Turns Autogrid on and off. Autogrid constrains the corners of views to nodes
on the grid. The default grid resolution is 8 by 8 pixels. You can change the
resolution through the Set Grid command.

Set Grid

Opens the dialog box, illustrated in Figure8-13, that lets you change the grid
size used with Autogrid. The units are pixels.

Layout Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-13 The Set Grid dialog box

width: | [ox |

Move To Front

Moves the selected view in front of its siblings on the screen by placing it
behind its siblings in the drawing list.

“Ordering Views” on page 5-10 describes how views are ordered.

Move Forward (Ctrl-Down Arrow)

Moves the selected view one step later in the drawing list, so that it’s drawn
after the view it previously preceded.

“Ordering Views” on page 5-10 describes how views are ordered.

Move To Back

Moves the selected view behind its siblings by placing it ahead of its siblings
in the drawing list.

“Ordering Views” on page 5-10 describes how views are ordered.

Move Backward (Ctrl-Up Arrow)

Moves the selected view one step earlier in the drawing list, so that it’s
drawn before the view it previously followed.

“Ordering Views” on page 5-10 describes how views are ordered.

Layout Menu 9-23

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Alignment

Opens the dialog box, illustrated in Figure8-14, through which you establish
a view alignment scheme that’s applied to the selected views when you click

Apply or subsequently choose Align.

Figure8-14 The Alignment dialog box

Alignment
™ Distribute
@ * Tiop

O " Center

{ Bofton

£ Height

[Align [T Distribute
£ | eft & Benten €00 Hight e e

“Aligning Views” beginning on page 5-8 describes the Alignment
dialog box.
A subset of the alignment options, illustrated in Figure8-15, appears on the

drawing palette.

Figure8-15 The alignment buttons on the palette

9-24 Layout Menu
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Align

Aligns the selected views using the alignment scheme specified through
Alignment.

Preview (Ctrl-Y)

Toggles the layout screen between layout mode and preview mode. In
Layout mode, NTK shows the rectangular extents of each view on the screen.
In preview mode, NTK displays the views approximately as they would
appear on the Newton screen.

“Previewing” beginning on page 5-11 describes preview mode.

Browser Menu

You use the Browser menu to manipulate slots and to control how the
browser displays templates and slots.

Template Info (Ctrl-I)

Opens a dialog box in which you can name and declare a selected view. A
view name operates as a symbol in NewtonScript. Declaring a view allows
you to access it symbolically from the view in which it’s declared and from
descendants of that view.

Figure8-16 illustrates the Template Info dialog box.

“Naming and Declaring Views” beginning on page 5-13 describes the
Template Info dialog box.

Browser Menu 9-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Figure8-16 The Template Info dialog box, for naming and declaring views

Template Info I

Marmne: I

™ Beclare Ta: I LI

ak. I Cancel I

New Slot

Opens a dialog box, illustrated in Figure8-17, for adding new slots to the
selected template.

Figure8-17 The New Slot dialog box

IpmtuApp

| Specific I | Methods I | Attributes I

Slot Mame: I Editor: IEvaIuate Iil

sdd || Done |

“Adding Slots” beginning on page 5-18 describes the New Slot dialog box.

9-26 Browser Menu
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Rename Slot

Opens a dialog box, illustrated in Figure8-18, that lets you rename the
selected slot.

Figure8-18 The Rename Slot dialog box

= Rename Slot

IcNiew

Hew Slot Name: ImySInli

oK I | Cancel I

If the slot is open for editing, Rename Slot applies outstanding changes and
closes the slot editor before changing the name.

Note that changing the name of the slot does not change existing occurrences
of the name in scripts. Changing the case of a name through Rename Slot
changes the name.

Templates By Type

Lists templates alphabetically by type.

Templates By Hierarchy

Lists templates by hierarchy, with sibling views listed in the order they’re
created.

Browser Menu 9-27

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

9-28

CHAPTER 9

NTK Commands

Slots By Name

Orders slots alphabetically in the browser slot list.

Slots By Type

Orders slots by type in the browser slot list.

Show Slot Values

Displays the value of each slot next to the slot name in the browser slot list.

Apply (Ctrl-E)

Checks syntax and inserts into the slot changes made in a slot editor.

Revert

Discards any changes made since the last Apply or Save.

Browser Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Window Menu

You use the Window menu to open browser windows and to open the
Inspector window or connect the Inspector.

Open Inspector

Opens the Inspector without making a connection to a Newton device. You
can have only one Inspector window open at a time.

Connect Inspector (Ctrl-K)

Connects the Inspector to a Newton PDA with the Toolkit application
installed and a connection to the development system. If the Inspector
window is not open, Connect Inspector opens it.

Chapter 1, “Installation and Setup,” describes how to set up a connection
between the development system and the Newton and how to install the
Toolkit application. Chapter 6, “Debugging” describes the commands
available through the Inspector.

New Browser (Ctrl-B)

Opens a new template browser on a layout file selected in a project window
or at the level of the selected view in a layout window.

You use the browser to edit templates in a layout file. “Browsing and Editing
Templates” beginning on page 5-16 describes the browser.

Open Layout (Ctrl-L)

Opens a layout window for the layout file selected in the project window.

Window Menu 9-29

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

Cascade

Arranges windows in cascade fashion.

Tile

Arranges windows in tile fashion.

Arrange Icons

Arranges the icons within the selected window.

Set Default Window Position

Sets the default window size for projects, layouts, browsers and text files.

Help Menu

9-30

You use the help menu for assistance with specific NTK Index topics.

Index

Opens Help window which displays NTK Index of available Help items.

Command Reference

Opens Help window which displays the commands available through the
NTK Index.

Using Help

Opens Help window which displays Using Help items.

Help Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

About Newton Toolkit

Displays information on current version of NTK and Product Team.

Help Menu 9-31

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER 9

NTK Commands

9-32 Help Menu

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A PPENDTIX A

Keyboard Text-Editing
Commands

This appendix lists the keyboard commands for navigating and manipulating
text in NTK slots, the project data file, and the Inspector window.

You can use the keyboard to

= specify an insertion point

= select text

= manipulate selected text

= delete text

= change the effect of the next keystroke

The keyboard text-editing commands operate relative to the current insertion
point or the selected text. “Editing Text” beginning on page 5-23 describes
the basic NTK text editor.

You can reverse the last keyboard command by pressing Ctrl-Z (Undo).

Setting the Insertion Point

You can set the insertion point with the commands in Table A-1. If text is
selected when you set the insertion point, it is simply deselected.

Setting the Insertion Point A-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A-2

APPENDIX A

Keyboard Text-Editing Commands

Table A-1 Moving the insertion point

Motion

Back one character
Forward one character
Down one line

Up one line

To beginning of word,
or back one word

To end of word, or to
end of next word

To beginning of line
To end of line

To next page

To previous page
To beginning of text

To end of text

Setting the Insertion Point

Keystrokes
Left arrow
Right arrow
Down arrow
Up arrow

Ctrl-Left arrow
Ctrl-Right arrow

Home

End

Page down
Page up
Ctrl-Home
Ctrl-End

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX A

Keyboard Text-Editing Commands

Selecting Text

You can select text with the commands listed in Table A-2. If text is already

selected when you issue one of the text-selection commands, the selection

is extended.

Table A-2 Selecting text with keyboard commands

Selection

One character back
One character forward
One word back

One word forward
Previous line

Next line

Indent selection right

Selecting Text

Keystrokes

Shift-Left arrow
Shift-Right arrow
Ctrl-Shift-Left arrow
Ctrl-Shift-Right arrow
Shift-Up arrow

Shift-Down arrow

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX A

Keyboard Text-Editing Commands

Manipulating Selected Text

You can use the commands listed in Table A-3 to manipulate selected text. As
the table shows, NTK supports the customary commands for cutting
(Ctrl-X), copying (Ctrl-C), and pasting (Ctrl-V).

Table A-3 Manipulating selected text

Manipulation Kaystrokes
Cut selection to Clipboard Ctrl-X
Copy selection to Clipboard Ctrl-C
Paste contents of Clipboard Ctrl-v
over selection
Indent selection left Ctrl-[
Indent selection right Ctrl-]

A-4 Manipulating Selected Text

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX A

Keyboard Text-Editing Commands

Deleting Text

You can delete text with the keyboard commands listed in Table A-4. The
NTK keyboard editing commands do not place deleted text onto the
Clipboard; to delete the selection and place it on the Clipboard, use
Command-X.

Table A-4 Deleting text with keyboard commands
Scope of deletion Keystrokes
Selection only Delete
Backspace
Selection or one character back Backspace
Shift-Backspace
Selection or one character Delete forward
forward
Deleting Text A-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX A

Keyboard Text-Editing Commands

Deleting Text

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A PPENDTIX B

Keyboard Shortcuts

This appendix lists keystroke combinations that invoke NTK menu items or
and that affect views in a layout or Browser window.

Table B-1 Keyboard equivalents to menu items
Key combination Effect

Ctrl-N New Layout

Ctrl-T New Proto Template
Ctrl-O Open

Ctrl-S Save

Ctrl-M Save All

Ctrl-P Print

Ctrl-Z Undo

Ctrl-X Cut

Ctrl-C Copy

Ctrl-vV Paste

Ctrl-D Duplicate

Ctrl-A Select All

Ctrl-R Search

Ctrl-F Find

Ctrl-G Find Next

Ctrl-1 Build Package
Ctrl-2 Download Package

B-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX B

Keyboard Shortcuts

Table B-1 Keyboard equivalents to menu items (continued)
Key combination Effect

Ctrl-Y Preview

Ctrl-I Template Info

Ctrl-E Apply

Ctrl-Down arrow Move Forward

Process Later

Ctrl-Up arrow Move Backward
Process Earlier
Ctrl-K Connect Inspector
Ctrl-B New Browser
Ctrl-L Open Layout

The keyboard commands listed in Table B-1 move templates within the view
hierarchy. You can issue these commands with a template selected in a
browser window. When a view is selected in a layout window, the Ctrl key in
combination with the arrow keys resizes the view, as described in “Resizing
a View” beginning on page 5-7.

Table B-2 Keyboard commands that affect the hierarchy
Key combination Effect
Ctrl-Left arrow Move a template one layer up in
the hierarchy
Ctrl-Right arrow Move a template one layer down
in the hierarchy
Ctrl-Up arrow Move a template one place up in the drawing list

(that is, move view backward).

Ctrl-Down arrow Move a template one place down in the drawing
list (that is, move view forward)

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX B

Keyboard Shortcuts

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

B-3

APPENDIX B

Keyboard Shortcuts

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A PPENDTIX C

Custom Bitmaps and Sounds

A bitmap, “BMP”, or sound, “WAV”, is a piece of data stored on the
development system and incorporated into a Newton application during the
project build. You can use bitmaps, sound, and data from other sources in
your application. NTK explicitly supports 'BMP' files and "WAV ' files, and it
includes functions for converting other files into resources your application
can handle.

This appendix describes how to embed 'BMP' and WAV files in Newton
applications.

Adding Bitmap and Sound Files to a Project

You add a bitmap or sound file to a project through the Add File item in the
File menu.

Using Bitmap and Sound Files

You can include 'BMP' files and “WAV’ files in an application. For example, to
include WAV files, you must

1. extract sound data from files and convert to sound format

2. embed sound data in to application

Opening and Closing Resource Files

NTK automatically opens and closes the resource files containing ' BMP' files
that you access through the picture slot editor or the Settings dialog box. You
need to open and close resource files only if you’re manipulating the
resources directly—when you're using sound files, for example, or when
you're using data specific to your application.

C-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

Using the Resource-Handling Functions

Current versions of NTK and the Newton object system support some kinds
of resources more fully than others.

The use of 'BMP' resources is well supported in the Newton object system and
NTK. For many of the system-supplied view prototypes, NTK locates the
appropriate resource automatically when an external resource file is included
in the application’s NTK project file.

On the other hand, the object system does not currently supply any proto-
types that use external sound resource files; thus, you need to do a little
more work to incorporate them in your application.

This section describes how NTK handles bi t map and sound files and
describes data extraction functions that are specialized for these resource

types.

Using Bitmaps

You can draw your pictures in any graphics program, and then paste them as
'BMVP' files. You add the bitmap file to an NTK project through the Add File
item in the Project menu.

NTK lets you add named 'BMP files to picture slots in your templates
through the standard picture slot editor, illustrated in Figure C-1

C-6 Using the Resource-Handling Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

Figure C-1 Adding a named 'BMP' file to a picture slot

File: M Include kM aszkl

Wit H eight:

Mo image selected

The File drop list contains all bitmap files that have been added to the project
file. The Picture list shows all named 'BMP' files. For more information on the
picture slot editor, see “Editing Slots” beginning on page 5-20.

Making a Bitmap From a 'BMP' File

NTK also supplies the Get BMPAsBi t s function for extracting bitmaps from
' BMP' files. NTK itself uses this function when manipulating the files you
access through the picture slot editor.

The Get BMPAsBI t s function retrieves a 'BMP' file by name, converts the

' BMP' to a bitmap, and returns a frame containing a bitmap object. It accepts
as its arguments the name of the 'BMP' file to be retrieved and a Boolean
value specifying whether to retrieve the mask for the bitmap from the file.
This function is described completely in “GetBMPAsBits” beginning on

page C-9, in the reference section of this appendix.

The following code example retrieves the 'BMP' file named Daphne and
stores it in the compile-time variable gDaphBi t d.
gDaphBits : = Get BWAsBi t s(HOVE & “ Daphne. BMP”, nil);

You can make the bitmap data available at run time by storing it in an
evaluate slot.

Using the Resource-Handling Functions C-7

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

The Drawing and Graphics chapter in Newton Programmer’s Guide: System
Software illustrates how you can use bitmap data when drawing.

Using External Sound Files

You can use any program that saves "WAV ' files to create sounds for your
application. NTK supplies the function, Get WAVAsSanpl es for extracting
sound data from these resources.

The Get WAVAs Sanpl es function reads a sound sampled at 22kHz and
returns a Newton sound frame.The function expects as its sole argument a
string specifying the name of the sound file.

The following code example retrieves by name the WAV file chi ckadee
and stores it in the compile-time variable gChi ckadee. To make sound data
available to the application, you create a compile-time global gChi ckadee
to initialize an evaluate slot in the application’s base view.

gChi ckadee : = Get WAVAsSanpl es(" chi ckadee");

You can make the sound available at run time by storing it in an evaluate slot.

See the Sound chapter in Newton Programmer’s Guide: System Software for
more complete information on using sound in Newton applications.

Custom Functions

C-8

This section describes the functions used to make frame objects from data
files. These functions are available only during compile time—they are not
available at run time.

Retrieving Resources

This section documents the functions to use to retrieve resources from an
open resource file. You can retrieve resources by type and either name or
resource ID.

Custom Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

GetBMPASBIts
Get BMPASBI t S(nameString, maskToo)

Retrieves the specified 'BMP' resource by name from an open resource file,
converts the 'BMP' to a bitmap, and returns a frame containing a bitmap
object and an optional mask.

nameString A string specifying the name of the resource to
be retrieved.

maskToo A Boolean value indicating whether to include a mask
in the returned frame. A mask is a companion bitmap
used for highlighting a screen element. If maskToo is
non-ni | , a mask is obtained by one of two means:

First, Get BMPAsBi t s looks in the resource file for a
resource with the same name as the specified 'BMP*
resource but with an exclamation point apended. If the
resource is found, it is returned in the mask slot.

Second, if no mask resource is found, a resource is
automatically constructed and returned in the mask slot
of the bitmap object.

If the maskToo parameter is ni | , no mask is found or
constructed for the bitmap.

The bitmap object returned by this function is a frame with the
following slots:

bits A reference to a binary object containing the bitmap data
bounds Abounds frame specifying the dimensions of the
bitmap; for example,
{left: O,
top: O,
Custom Functions C-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

C-10

APPENDIX C

Custom Bitmaps and Sounds

right: bitmapWidth,
bott om bitmapHeight}
mask A reference to a binary object containing the mask
bitmap.This slot is included only if the maskToo
argument was not ni | .

Note

Picture objects are stored much more compactly as binary

" BW?' objects than as bitmap objects (obtained with

Cet BVWPAsBI t s). Drawing from a bitmap, however, may be
significantly faster. The Drawing and Graphics chapter of
Newton Programmer’s Guide: Sysltem Software contains more
discussion of picture objects. O

GetWAVAsSamples

Get WAVAs Sanpl es(filename)

Retrieves the specified 22KHz sound resource from the currently open
resource file and returns the data in Newton sound format.

nameString A string specifying the name of the sound file to be
retrieved.

LoadDataFile

LoadDat aFi | e(filename, class)

Reads arbitrary data stored in the file named and returns the result as a
binary object with the specified class.

Custom Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

Summary of Custom Functions

This section categorizes the resource-manipulation functions by task.

Getting Custom Data

Get BMPASBI t s(filename, maskToo)
Get WAVAsSanpl es(fi |l enane)
LoadDat aFi | e(filename, class)

Summary of Custom Functions C-11

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX C

Custom Bitmaps and Sounds

C-12 Summary of Custom Functions

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A PPENDTIX D

Specialized Slot Editors

This appendix describes the specialized slot editors you use for editing the
system-defined slots. The description of the vi ewBounds slot, which is a
simple rectangle slot, articulates the meanings of the four integers under
different justification settings.

Script Slots

You edit the slots containing system-defined messages with the basic NTK
text editor described in “Editing Text” beginning on page 5-23.

The system messages appear in the Specific and Methods pop-up menus
in the browser and New Slot dialog boxes. When you add one of these
slots, NTK places the skeletal structure of the method in the slot. If you
add avi ewSt r okeScri pt slot, for example, NTK defines the initial slot
contents as

func(unit)
begi n
end

If a method takes no parameters or requires no special return value, NTK
sets the initial contents to the simple function statement

func()
begin
end

The system-defined messages are described in in the Newton Programmer’s
Guide.

Script Slots D-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

CHAPTER D

View Attributes

The view attributes slots contain various specifications that the Newton uses
to create, display, and manipulate views. Some of the slots contain a single
value or string. The vi ewOr i gi nXand vi ewQr i gi nY slots, for example,
each contain a number, which you edit through the number editor. The

vi ewFont slot contains a single statement that specifies a font name. You
edit it and the other attribute slots containing text with the standard NTK
text editor, described in “Editing Text” beginning on page 5-23.

This section illustrates the specialized editors you use to use to edit the more
complex view attributes slots. For detailed descriptions of the fields, see the
“Views” chapter in Newton Programmer’s Guide: System Software.

viewBounds

Left: Il] Right: Il] Width: 0
Top: Il] Bollom:ll] Height: 0

The viewBounds slot defines the bounds of a view. NTK automatically fills in
the viewBounds values when you lay out a view in the graphical editor. The
values in the four slots are relative to the parent or sibling view, and the exact
meaning varies with different justification strategies, as defined in the
view]Justify slot. Table D-1 summarizes the meanings of the Left and Right
fields with different horizontal view justification settings. Positive numbers
are offset to the right, negative to the left. Table D-2 summarizes the
meanings of the Top and Bottom fields with different vertical view
justification settings. Positive numbers are offset down, negative up.

D-2 View Attributes

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX D

Specialized Slot Editors

Table D-1

Meaning of viewBounds fields for horizontal justification

Justification

Left Relative

Right Relative

Center Relative

Full Relative

Table D-2

Meaning of Left

The offset from the parent’s or
sibling’s left edge to the view’s
left edge.

The offset from the parent’s or
sibling’s right edge to the view’s
left edge.

The left offset of the view’s
center from the parent’s or
sibling’s center.

The offset of the view’s left edge
from the parent’s or sibling’s left
edge.

Meaning of Right

The offset from the parent’s or
sibling’s left edge to the view’s
right edge.

The offset from the parent’s or
sibling’s right edge to the view’s
right edge.

The total width of the view.

The offset of the view’s right
edge from the parent’s or
sibling’s right edge.

Meaning of viewBounds fields for vertical justification

Justification

Top Relative
Bottom
Relative

Center Relative

Full Relative

Meaning of Top

The offset from the parent’s or
sibling’s top edge to the view’s
top edge.

The offset from the parent’s or
sibling’s bottom edge to the
view’s to the view’s top edge

The vertical offset of the view’s
vertical center from the parent’s
or sibling’s center.

The offset of the view’s top edge
from the parent’s or sibling’s
top edge.

View Attributes

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Meaning of Bottom

The offset from the parent’s or
sibling’s top edge to the view’s
bottom edge.

The offset from the parent’s or

sibling’s bottom edge to the
view’s bottom edge.

The total height of the view

The offset of the view’s bottom
edge from the parent’s or
sibling’s bottom edge.

APPENDIX D

Specialized Slot Editors

viewFlags

R yaible

i T e Frsed Tppan |"'I-|'I'I |:I

I visboubstelownds | [vEinglelbsi it ST

I v madllnky B wlSickabin ™ visszzAliowed

I wilisping I wimskt Rl T T T .

™ vheatng I v osbenwiimed I vMumberstBowed

T T — - B

™ iFerpis [wPanclusliontlissed | whesthomDsotonsmns
I wiaeT hngdilioeed I viapcfmguaed

viewFormat
Flosiinesd; D Fit [Fans [#
Raged Lnea: Ihln-i Iij

R

viewJustify

[View Position

View Attributes

Horizontal: Parent: |Left Relative Sibling:
Vertical: Parent: |Top Relative Sibling:
[Text/Graphics Printing
Horizontal: [Let 9] O Reflow
A [Lasso Children
vecat [fop 8
Text Limits: [No limit (2]

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX D

Specialized Slot Editors

viewEffect

Effect: I Mone IEI
Steps: I 1} Time: I 1}
Columns: I 1} Rows: I 1}

[T Alt. Horz. Columns [Alt. Horz. Rows
[T Alt. Vert. Columns [T Alt. Vert. Rows

Horz. Dir.: IN‘"“3 j Vert. Dir: INone j

[Reveal Line [Wipe [” From Edge
viewTransferMode
Teandier bode |II| H

Specific Slots

The slots in the Specific pop-up menu represent the slots that are specific to
the selected proto. These slots hold methods or simple values that you edit
with one of the standard slot editors.

Specific Slots D-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX D

Specialized Slot Editors

Specific Slots

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

A PPENDTIX E

Newton Debugging
Applications

This appendix describes a handful of Newton applications that help you test
and examine your software.

NTK is shipped with a number of small debugging tools:

= HeapShow, which displays heap statistics while they’re happening and
lets you force low-memory conditions

= Snarf, which adds a simulated transport for testing communication
software

= Exception Printer, which adds more information to exception reports on
the Newton

= vFlags, which lets you manipulate the recognition flags for a clEdit view
and test the effect on input recognition

The vFlags application is shipped with its source code, so you can modify
the application for your own purposes.

The Newton Debugging Tools folder also contains a project named
NSDShortCuts, which lets you manipulate your own debugging
environment.

The bulk of this appendix is the HeapShow documentation.

Installing the Debugging Packages

The Newton debugging applications are shipped as package files, which you
can install on the Newton using the Newton Package Installer.

Installing the Debugging Packages E-1

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

To remove an application from a Newton 2.0 unit, scrub its icon in the Extras
drawer. To remove an application from a Newton MessagePad, use the
Remove Software option in the Prefs application.

HeapShow

E-2

This section describes the HeapShow application, which allows you to
examine heap use on the Newton.

About HeapShow

HeapShow is a Newton application that displays statistics about the Newton
heaps—that is, the portions of Newton memory allocated for storing
pointers, handles, and frames—in a floating view on the Newton screen.

While HeapShow is running, you can start up and use other applications and
then watch the impact on the heaps.

About Newton Memory Management

Memory is allocated in the Newton system in a number of ways, but most
memory allocations are for either heaps or stacks. HeapShow lets you
monitor

= the two biggest heaps: the pointers heap and the handles heap

= the frames “heap,” which is actually a large pointer allocation within the
pointers heap

= the amount of unallocated memory

Heaps grow and shrink only as needed. If a memory allocation cannot be
accommodated by the free space available in the target heap, then the heap
grows in 1 KB increments until there’s enough contiguous space available.
You can watch the changes in HeapShow: If the target heap is the pointers
heap, for example, then the size of the pointers heap grows, and the amount

HeapShow

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

of free system memory shrinks. The amount of free space within the pointers
heap might change.

When there’s no more space to grow the size of the heap, the stack manager
asks the various tasks to reduce the size of their heaps to free up memory—
heaps and stacks free space only when asked, which is why a memory
allocation in one heap can reduce the size of the pointers heap.

C-code often creates heaps specific to its tasks. Communication tools, for
example, typically allocate a separate heap. Moreover, C-code needs memory
to hold its stacks. HeapShow cannot display statistics about special heap or
stack allocations.

If a piece of C-code allocates a pointer without specifying a heap, the
memory comes out of the pointers heap. If a piece of C-code allocates a
handle without specifying a heap, the memory comes out of the handles
heap.

Allocations in NewtonScript are always made in the frames “heap,” which is
actually a pointer allocation within the pointers heap. The frames heap has
its own heap manager and does not grow and shrink like the other heaps.

The frames heap manager deallocates memory (that is, garbage collects) only
when there’s not enough space for a frame allocation. HeapShow lets you
force the frames heap manager to deallocate memory every time it check the
system, so you can see the minimum space needed.

Using HeapShow

You start up HeapShow by tapping its icon, illustrated in Figure D-1.

Figure D-1 The HeapShow icon

%

HeapShow

HeapShow E-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

The HeapShow application displays the sizes and number of free bytes in the
pointer, handles, and frames heaps, as illustrated in Figure D-2.

Figure D-2 The default HeapShow display

FRAMEZ

FOIHTERS HAHDLES

U 17223e £042 104442
F 1164 432 3402

e EJEIME)X)

Info button Free bytes
in system

Size of heap
Free bytes within heap

The Info button in the lower-left corner lets you set the preferences, which
are described in “Preferences” beginning on page E-5.

The buttons along the lower-right edge, which are described in “HeapShow
Controls” beginning on page E-8, let you

» control what information is displayed and how it’s presented

= force memory or statistics updates

Statistics Display

HeapShow lets you examine the pointer, handles, and frames heaps on the
Newton. You can adjust the display to show either numerical data or a
graphical representation of the heap, as illustrated in Figure D-3.

HeapShow
Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

Figure D-3 Numerical data versus fragmentation graphics

04400C0C 04445000 044047E0
O44A77F0

0441000

U 172336 104445
F 1164 34892 0442 4BF4

I SVETEM FREE EFIREL

Numerical data Heap fragmentation graphics

You can also change the numerical display to show either
= the total sizes and number of bytes free in the three heaps or

s the differences in each since the display was last changed.

Note that the frames heap is of fixed size; only the number of free bytes
changes.

“HeapShow Controls” beginning on page E-8 describes how to change the
HeapShow display.

Preferences

You can adjust the HeapShow Preferences to

= turn sound cues on and off

» balance the amount of data collected against the time spent collecting it
s set the interval at which HeapShow checks the status of the heaps.

To reach the Preferences settings, tap the Info button in the statistics display.
Figure D-4 illustrates the HeapShow Preferences view.

HeapShow E-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

Figure D-4 HeapShow Preferences

E’ Heap5show Preferences

Frammes Swstemn

Annoying Sounds
More Accuracy i i

Reserve (Kb} #0h BN
#CheckInterval 10 S¢conds

y A, Mkins /0. Temkin) 195 Apple Compiter

You can adjust sound effects and accuracy independently for the heaps and
for system memory.

Annoying Sounds Controls the HeapShow sound effects.

When Frames is checked, different sounds play if the
amount of space used in either the pointer or handle
heap grows or shrinks.

When System is checked, a sound plays if the
availability of system memory changes.

More Accuracy Adjusts how thoroughly HeapShow researches the state
of the heaps
When Frames is checked, HeapShow performs a
garbage collection in the frames heap before reporting
the statistics.
When System is checked, HeapShow includes the
memory that stacks are willing to give back to the stack
manager when calculating the system-wide free
memory figure.

Reserve (kB) Allocates memory out of the frames heap, the pointer
heap, or a newly created heap. You can use this option

E-6 HeapShow

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

to create out-of-memory situations when testing your
application.

When you tap one of the Reserve entries, HeapShow
displays a view that lets you set the amount of memory
to reserve.

If you set this number for Frames, HeapShow allocates
the specified number of kilobytes in the frames heap. If
you set this number for System, the memory comes out
of the pointers heap. You can create a new heap and
reserve it by activating the Separate Heap option, which
appears in the Reserve System pop-up view, illustrated
in Figure D-5.

Memory set aside by HeapShow is released when
HeapShow exits.

Figure D-5 Sizing the reserve pointers heap or a newly created heap

) xb

LY J

Check Interval

HeapShow

i} Separate Heap

&

Determines the interval at which HeapShow
automatically checks memory statistics and updates the
display. Tap the time field to access the list illustrated in
Figure D-6.

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

Figure D-6 Check Interval options

2 Seconds

5 Seconds
¥'10 Seconds

30 5econds

CheckInterval None

If you choose None, HeapShow updates the statistics
only when you tap the Heap Check button, described
on page E-9.

HeapShow Controls

You tap the buttons on the lower-right edge of the HeapShow view to change

the display and to force a garbage collection or a heap check. Figure D-7
illustrates the HeapShow controls.

Figure D-7 The HeapShow controls

E-8

FOINTERS HHHDLES FRAMES
172826 £942
zF 1164

iiared - EJ@)

Sum/Difference Heap Map

Garbage Collection Heap Check

Tap the Sum /Difference button to toggle the display between
= the total sizes of all heaps and

= the size differences since the display was changed to show differences.

Tap the Garbage Collection button to force the Newton to reclaim unused
memory.

HeapShow

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

Tap the Heap Check button to force an immediate update of the stack
statistics.

Tap the Heap Map button to toggle the display between
= anumerical presentation of the data and

» adisplay of heap maps that illustrate heap fragmentation

Figure D-8 Heap fragmentation graphics

i FOINTERS HAMDLES FRAMES
Starting address 04400C0C O44A45C0C 04404 7ED
e o

04447 TR0

Allocated memory shown in black;
free memory shown in white

Ending address 0442 ABF4

Y@L

Current bytes per pixel Scroll Through Display

Zoom In Zoom Out

You can use the controls illustrated in Figure D-8 to zoom in or out and to
scroll through the map.

HeapShow E-9

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

APPENDIX E

Newton Debugging Applications

E-10 HeapShow

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Glossary

application base view

array

binary object

Boolean

The topmost parent view in an application. The applica-
tion base view encloses all other views that make up the
application.

A sequence of numerically indexed slots (also known as
the array elements) that contain objects. The first
element is indexed by zero. Like other non-immediate
objects, an array can have a user-specified class, and can
have its length changed dynamically.

A sequence of bytes that can represent any kind of data,
can be adjusted in size dynamically, and can have a
user-specified class. Examples of binary objects include
strings, real numbers, sounds, and bitmaps.

A special kind of immediate value. In NewtonScript,
there is only one Boolean, and it is called t r ue.
Functions and control structures use ni | to represent
false. When testing for a true/false value, ni |
represents false, and any other value is equivalent to
true.

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

GL-2

GLOSSARY

break loop

byte code

child

class

constant

declaring a template

evaluate slot

flag

font spec

frame

function-call stack

A state of the Newton processor in which program
execution is suspended and the Newton accepts input
only from an Inspector connection.

The hardware-independent instructions that are
interpreted when a NewtonScript function executes.

A frame that references another frame (its parent) from
a_parent slot. With regard to views, a child view is
enclosed by its parent view.

A symbol that describes the data referenced by an
object. Arrays, frames, and binary objects can have
user-defined classes.

A value that does not change. In NewtonScript the
value of the constant is substituted wherever the
constant is used in code.

Registering a template in another view (usually its
parent) so that the template’s view is pre-allocated
when the other view is opened. This allows access to
methods and slots in the declared view.

Aslot that’s evaluated when NTK compiles the
application.

A value that is set either on or off to enable a feature.
Typically flag values are single bits, though they can be
groups of bits or a whole byte.

A structure used to store information about a font,
including the font family, the font style, and the point
size.

An unordered collection of slots, each of which consists
of a name and value pair. The value of a slot can be any
type of object, and slots can be added or removed from
frames dynamically. A frame can have a user-specified
class. Frames can be used like records in Pascal and
structs in C, but can also be used as objects which
respond to messages.

A virtual stack that contains an activation record for
each active function. See stack activation record.

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

GLOSSARY

function object An executable object in NewtonScript.

Function objects are created by the NTK compiler from
the function constructor:

func(args) funcBody.

An executable function object includes values for its
lexical and message environment, as well as code. This
information is captured when the function constructor
is evaluated at run time.

global A variable or function that is accesible from any
NewtonScript code.

global data file An NTK file named “GlobalData,” in the same folder as
the NTK application, that is compiled once each time
you launch NTK. You can place in it NewtonScript code
that you want available from any project.

immediate A value that is stored directly rather than through an
indirect reference to a heap object. Immediates are
characters, integers, or Booleans. See also reference.

implementor The frame in which a method is defined. See also
receiver.
inheritance The mechanism by which attributes (slots or data) and

behaviors (methods) are made available to objects.
Parent inheritance allows views of dissimilar types to
share slots containing data or methods. Prototype
inheritance allows a template to base its definition on
that of another template or prototype.

instantiate To make a run-time object in the NewtonScript heap
from a template. Usually this term refers to the process
of creating a view from a template.

layout file A file that contains view templates laid out in NTK.

layout view The topmost parent of all other views in a single NTK
layout file.

local A variable whose scope is the function within which it

is defined. You use the | ocal keyword to explicitly
create a local variable within a function.

GL-3

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

GLOSSARY

message A symbol with a set of arguments. A message is sent
using the message send syntax, frame: messageName() ,
where the message, messageName, is sent to the
receiver, frame.

method A function object in a frame slot that is invoked in
response to a message.

NewtonScript heap
An area of RAM used by the system for dynamically
allocated objects, including NewtonScript objects.

ni | A value that indicates nothing, none, no, or anything
negative or empty. It is similar to (voi d*) 0 in C. The
value ni | represents “false” in boolean expressions;
any other value represents “true.”

object A typed piece of data that can be an immediate, array,
frame, or binary object. In NewtonScript, only frame
objects can hold methods and receive messages.

object stream file See stream file.

package The unit in which software can be installed on and
removed from the Newton. A package consists of a
header, which contains the package name and other
information, and one or more parts, which contain
the software.

package file A file that contains downloadable Newton software.
package store See store part.
parent A frame that is referenced through the _par ent slot of

another frame. With regard to views, a parent view
encloses its child views.

part A unit of software—either code or data—that’s created
during a single NTK build of an application, book,
store, or auto part. The format of the part is identified
by a four-character identifier called its type or its part

code.

part frame The top-level frame that holds an application, book, or
auto part.

picker A type of view on the Newton that pops up and contains

a list of items. The user can select an item by tapping it

GL-4

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

GLOSSARY

pop-up
project
project file

proto

receiver

reference

resource

resource file

root view

self
siblings
slot

soup

in the list. This type of view closes when the user taps
an item in the list or taps outside of it without making
a selection.

See picker.

The collected files and specifications that NTK uses to
build a package that can be downloaded and executed
on the Newton.

An NTK file that contains a list of files to be included in
a build and the build specifications.

A frame that is referenced through another frame’s

_pr ot o slot. With regard to views, a proto is not
intended to be directly instantiated—you reference the
proto from a template. The system supplies several
view protos, which an application can use to implement
user interface elements such as buttons, input fields,
and so on.

The frame that was sent a message. The receiver for the
invocation of a function object is accessible through the
pseudo-variable sel f . See also implementor.

A value that indirectly refers to an array, frame, or
binary object. See also immediate.

Raw data—usually bitmaps or sounds—stored on the
development system and incorporated into a Newton
application during the project build.

A file that contains Macintosh-style resources, to be
used during an NTK project build.

The topmost parent view in the view hierarchy. All
other views descend from the root view.

A pseudo-variable that is set to the current receiver.
Child frames that have the same parent frame.

An element of a frame or array that can hold an
immediate or reference.

A persistently stored object that contains a series
of frames called entries. Like a database, a soup

GL-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

GLOSSARY

has indexes that can be used to access entries in a
sorted order.

stack activation record
A frame on the function-call stack that describes a
function that has not yet completed execution. A stack
activation record contains a pointer to the next
instruction that’s to be executed; the function’s receiver
and implementor, if any; and the function’s parameters,
temporary variables, and named variables.

store A physical repository that can contain soups and
packages. A store is like a volume on a disk on a
personal computer.

store part A part that encapsulates a read-only store. This store
may contain one or more soup objects. Store parts
permit soup-like access to read-only data residing in a
package. Store parts are sometimes referred to as
package stores.

stream file A file encoded in Newton Streamed Object Format
(NSOF). You can use NTK to build stream files, and you
can incorporate stream files into NTK projects.

template A frame that contains the data description of an
object (usually a view). A template is intended
to be instantiated at run time. See also proto.

text file A file that contains text to be compiled during the build.

user proto A proto defined by an application developer, not
supplied by the system.

view The object that is instantiated at run time from a

template. A view is a frame that represents a visual
object on the screen. The _pr ot 0 slot of a view
references its template, which defines its characteristics.

view class A primitive building block on which a view is based.
All view protos are based directly or indirectly (through
another proto) on a view class. The view class of a
view is specified in the vi ewCl ass slot of its template
or proto.

GL-6

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

Index

A

About Newton Toolkit 9-31

activation records 6-12, 7-6

Add File command 9-15

Add Window 9-15

afterScript slots 4-54

Align command 9-25

Alignment command 5-9 to 5-10, 9-24
application base view 3-6, 5-3
Application/Book Characteristics ?? to 4-9
application parts 4-18, 4-48

application settings 4-6

Apply command 5-18, 9-28

App Preferences 4-20

ARM machine code. See native code
Arrange Icons 9-30

array GL-1

Arrow Keys Move By 4-25

Auto Close 4-8

Auto Download After Building Package 4-22
Autogrid On command 9-22

Auto Indent 4-28

auto parts 4-18, 4-49

Auto Remove Package 4-11

Auto Save Before Building Package 4-22

B

base view
application 3-6
layout 3-17
beforeScript slots 4-53
binary object GL-1
bitmap 5
BMP 5
book parts 4-18, 4-49
Boolean GL-1
Boolean slots 5-22
BreakLoop function 6-5, 6-11 to 6-12, 6-26
user modification functions 7-5, 7-13 to 7-14
break loops 6-11 to 6-12, 6-26, 7-3 to 7-5, 7-13 to 7-15
breakOnThrows variable 6-12, 6-21
break points 7-3 to 7-5, 7-10 to 7-15
browser 5-16 to 5-24
adding non-view objects 5-28
browsing templates 5-16 to 5-19

editing templates 5-18 to 5-24, 5-28
preferences settings 4-25 to ??
searching for text 5-25 to 5-28
Browser Preferences command 4-25 to ??
build heap 4-23
Build Package command 4-43 to 4-55, 9-16
Output Settings 4-16 to ??
Package Settings 4-9
processing templates 4-53 to 4-54
Project Settings 4-12
byte code 4-43, 7-7
displaying 7-7 to 7-8
interpreter instructions 7-24 to 7-49
suppressing 4-15

C

Cascade 9-30
Check Global Function Calls 4-14
child GL-2
class GL-2
Clear command 9-6
Clone function 6-37
Close command 9-3
Command Reference 9-30
Compile for Debugging 4-13, 4-44 to 4-45, 7-2
Compile for Profiling 4-15
compiler options ?? to 4-12, 4-12 to ??, 4-43 to 4-50
compile-time functions 4-36 to 4-42
Connect Inspector command 9-29
constants GL-2
defined by NTK 4-34 to 4-36
defining 4-31, 4-37
Copy command 9-5
Copy Protected 4-11
copyright, package 4-12
custom parts 4-18, 4-51
Cut command 9-5

D

Debug function 3-33, 6-7 to 6-8, 6-23
DebuggerInfo slot 7-2
debugging 6-1 to 6-40, 7-1 to 7-49

break loops 6-11 to 6-13, 6-26, 7-3 to 7-5

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

IN-1

INDEX

break points 7-3 to 7-5, 7-10 to 7-15

displaying interpreter instructions 7-7 to 7-8, 7-21 to

7-22,7-24 to 7-49
examining the stack 6-12 to 6-13, 7-6, 7-16 to 7-20
functions for 6-22 to 6-30, 7-9 to 7-22
stepping through code 7-15 to 7-16
trace variable 6-14, 6-21
tracing execution flow 6-14 to 6-15
tutorial 3-31 to 3-35
variables for 6-21 to 6-22
DebugHashToName package 7-2
debug slot 4-13, 6-7
declaring views 5-13
DefConst function 4-38
DefineGlobalConstant function 4-37 to 4-38
Delete Old Package on Download 4-10
deletion script 4-40
Disasm function 7-7, 7-21
controlling display 7-24
DisasmRange function 7-21
Display function 6-9, 6-25
Download Package command 9-16
Auto Download After Building Package 4-22
Delete Old Package on Download 4-10
drawing 6-20 to 6-21
Duplicate command 9-6
DV function 3-34, 6-8 to 6-9, 6-23

E

EditCmds 1-3

EnableBreakPoint function 7-11

error messages 4-54

Espy.fon 1-3

evaluate slots 5-20

Exception Printer application E-1
exceptions, breaking for 6-11
execution flow, tracing 6-14 to 6-15
Exit 9-4

Exit Break Loop button 6-12
ExitBreakLoop function 6-12, 6-26
Export Package to Text command 9-16
extended debugging functions 7-2 to 7-22

F

Faster Compression 4-11
Faster Functions 4-16
Faster Stores 4-18
files

adding to a project 4-2

IN-2

global data 4-29
layout 4-3, 5-14
object stream 4-5, 4-18, 4-50 to 4-51
package 4-5
project 4-2 to 4-3
proto 5-16
resource 4-4
saving automatically 4-22
text 4-4, 4-31 to 4-38
Find command 5-26 to 5-27, 9-8
Find Inherited command 5-27, 9-8
Find Next command 5-26 to 5-27, 9-8
font spec GL-2
For Newton 2.0 Only 4-16
frames GL-2
function-call stack 7-6
function objects 7-7, GL-3
functions
BreakLoop 6-5, 6-11 to 6-12, 6-26, 7-5, 7-13 to 7-14
Clone 6-37
compile-time 4-36 to 4-42
Debug 3-33, 6-23
debugging 6-22 to 6-30, 7-9 to 7-22
DefineGlobalConstant 4-37 to 4-38
Disasm 7-7,7-21
DisasmRange 7-21
Display 6-9, 6-25
DV 3-34, 6-8 to 6-9, 6-23
EnableBreakPoint 7-11
ExitBreakLoop 6-12, 6-26
GC 6-29
GetAllBreakPoints 7-12
GetAllNamedVars 7-19
GetAllTempVars 7-18
GetBreakPointLabel 7-13
GetCurrentFunction 7-17
GetCurrentImplementor 7-20
GetCurrentPC 7-17
GetCurrentReceiver 7-20
GetLayout 4-39
GetLocalFromStack 6-27
GetNamedVar 7-19
GetPathToSlot 7-7, 7-20
GetPathWhereSet 7-7, 7-21
GetSelfFromStack 6-27
GetSound11l 10
GetTempVar 7-18
GloballyEnableBreakPoints 7-12
HasSlot 6-37
InstallBreakPoint 7-4, 7-11
IsGlobalConstant 4-39
Load 4-42
LocObj 4-46
NSDBreakLoopEntry 7-5, 7-14
NSDBreakLoopExit 7-5, 7-15

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

INDEX

primitive 7-40

Print 6-9, 6-24
QuickStackTrace 7-16
ReadStreamFile 4-42
RemoveAllBreakPoints 7-11
RemoveBreakPoint 7-11
resource-handling 8 to 10
RunUntil 7-16
SetBreakPointLabel 7-13
SetCurrentPC 7-17
SetNamedVar 7-19
SetTempVar 7-18

StackTrace 6-12 to 6-13, 6-27, 7-6, 7-16
Stats 6-16, 6-28

Step 7-15

StepIn 7-15

StepOut 7-15

TrueSize 6-16 to 6-20, 6-28
UndefineGlobalConstant 4-38
ViewAutopsy 6-20 to 6-21, 6-30
Where 7-18

Write 6-9, 6-25

G

GC function 6-29
GetAllBreakPoints function 7-12
GetAllNamedVars function 7-19
GetAllTempVars function 7-18
GetBMPASsBits 9
GetBreakPointLabel function 7-13
GetCurrentFunction function 7-17
GetCurrentImplementor function 7-20
GetCurrentPC function 7-17
GetCurrentReceiver function 7-20
GetLayout function 4-39
GetLocalFromStack function 6-27
GetNamedVar function 7-19
GetPathToSlot function 7-7, 7-20
GetPathWhereSet function 7-7, 7-21
GetSelfFromStack function 6-27
GetSound11 function 10
GetTempVar function 7-18
GetWAVAsSamples 8

global GL-3

global data file 4-29
GloballyEnableBreakPoints function 7-12
glossary GL-1

Grid On 4-24

H

hardware requirements 1-2
HasSlot function 6-37
HeapShow application E-2 to E-9
Heaps Preferences 4-23

home constant 4-34, 4-35

Icon 4-8

Ignore Native Keyword 4-14

immediate value GL-3

indenting 4-28

Index 9-30

inheritance GL-3

Inspector 6-2 to 6-22
connecting 1-6 to 1-7

Inspector Toolbar 4-20

installation

connecting a Newton to a Macintosh 1-4 to ??
installing NS Debug Tools on a Newton 7-2

installing NTK on a Macintosh 1-2 to ??

installing the Toolkit application on a Newton 1-4 to

1-6
troubleshooting 1-7 to 1-8
InstallBreakPoint function 7-4, 7-11
install scripts 4-32 to 4-33
Install Toolkit App command 1-4, 9-17
instantiation 2-2
IsGlobalConstant function 4-39

K

kAppName constant 4-34
kAppString constant 4-34
kAppSymbol constant 4-35
kDebugOn constant 4-35

keyboard text-editing commands A-1 to A-4

klgnoreNativeKeyword constant 4-35
kPackageName constant 4-35
kProfileOn constant 4-35

L

language string, for localization 4-13, 4-35, 4-46

lastExError variable 6-39
lastExMessage variable 6-39
lastEx variable 6-39

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

IN-3

INDEX

layout_filename constant 4-36, 4-53
layout base view 3-17
layout files 4-3
constants and variables referencing 4-36
creating 3-7, 5-1
defined 2-3, 5-3
linking 3-19 to 3-21, 5-14 to 5-16
Layout Preferences command 4-24 to 4-25
Layout Size command 9-22
Layout Toolbar 4-20
layout view 5-3
linked subviews 3-16, 5-14 to 5-16
defined 5-3
Link Layout command 5-14, 9-2
LoadDataFile 10
Load function 4-42
localization frame 4-46
LocObj function 4-46

M

main heap 4-23
Mark As Main Layout command 4-3
Mark as Main Layout command 9-17
masks 5-23
memory
displaying heap-use statistics E-2 to E-9
measuring free memory 6-16
measuring objects in memory 6-16 to 6-20
Newton memory management E-2 to E-3
messages GL-4
methods GL-4
Move Backward command 5-10, 9-23
Move Forward command 5-10, 9-23
Move To Back command 5-10, 9-23
Move To Front command 5-10, 9-23
MsgPad.txt 1-3

N

name
package 4-10

naming views 5-13

native code 8-10 to 8-20
compiler options 4-14, 4-15, 4-43
functions optimized for calling from 8-13
marking functions for native compiling 8-11
profiling 8-19 to 8-20
suppressing 4-14

New Browser command 5-16, 9-29

New Layout command 5-1 to 5-3, 9-1

IN-4

New Project command 9-15

New Proto Template command 5-16, 9-2
New Slot command 5-19 to 5-20, 9-26
New Text File command 9-2
NewtonScript heap GL-4
NewtonScript heap. See also memory
Newt Screen Shot 9-9

nil GL-4

NSDBreakLoopEntry function 7-5, 7-14
NSDBreakLoopExit function 7-5, 7-15
NS Debug Tools package 7-2
NSDParamFrame 7-24

NTK 1.0 Build Rules 4-14

number slots 5-22

O

objects GL-4

object stream files 4-5, 4-18, 4-41, 4-50 to 4-51
Open command 9-2

Open Inspector command 6-4, 9-29

Open Layout command 5-2, 9-29

Open Project command 9-15

Output Settings command 4-16 to ??

P

package files 4-5

packages
copy protecting 4-11
defined 2-3
downloading 4-10, 4-22
part types 4-47 to 4-50
version number 4-12

Package Settings command 4-9 to 4-12

Packages Preferences 4-21

parent GL-4

part frame 4-32, 4-33

parts 4-47 to 4-50
in auto-remove packages 4-50
specifying type 4-18 to ??

Paste command 9-5

picker GL-4

'PICT' resources 4-4, 6 to 8
application icon ?? to 4-9
in picture slots 5-21 to 5-23

picture slots 5-23

platform files 4-30
specifying 4-13

Platfrms 1-3

Preview command 5-11, 9-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

INDEX

primitive functions 7-40
Print command 9-4
printDepth variable 6-22
printFormat_filename variable 4-36
Print function 6-9, 6-24
printLength variable 6-22
Print One command 9-4
Print Setup 9-4
Process Earlier command 4-3, 9-17
Process Later command 4-3, 9-17
Profile Native Functions 4-15
profiler 8-1 to 8-10
configuring on the development system 8-4 to 8-6
configuring on the Newton 8-6 to 8-7
marking functions for profiling 8-2 to 8-4
profiling native functions 8-19 to 8-21
program counter 6-13,7-8
programming problems 6-32 to 6-40
comparing with nil 6-34 to 6-35
dangling frame references 6-34
printing in communications code 6-38
resizing read-only objects 6-36 to 6-37
setting the function value 6-34
setting the wrong slot value 6-32 to 6-34
text not drawing 6-38
using nil in expressions 6-36
programming tips 6-32 to 6-40
accessing parent view 6-40
examining exceptions 6-39
maintaining view state 6-39
project file 4-2 to 4-3
projects
defined 2-3
managing 4-1 to 4-6
Project Settings 4-12 to 4-15
project window 4-2
Project Settings command 4-12 to 4-15
protos 5-3, GL-5
previewing 5-11
user protos 5-16

Q

QuickStackTrace function 7-16

R

read-only objects, copying 6-37
ReadStreamFile function 4-42
receiver GL-5

Recent File 9-4

rectangle slots 5-23
Redo 9-5
references GL-5
RemoveAllBreakPoints function 7-11
RemoveBreakPoint function 7-11
Remove File command 9-15
remove frame 4-33, 4-34
remove scripts 4-33 to 4-34
Rename Slot command 9-27
REP loop 7-3
resource files 4-4
adding to a project 5
opening and closing 5 to ??
resources ?? to 11
application icon ?? to 4-9
'PICT' 5-23,6t0 8
retrieving 8 to 10
'SND ' 8
Result 4-19
Revert command 9-4, 9-28
root view GL-5
RunUntil function 7-16

S

Save All command 9-3
Save As command 9-3
Save command 9-3
Screen Shot 9-9
script slots 5-21
Search command 5-25 to 5-26, 9-7
Select All command 9-6
Select Hierarchy command 9-6
Select in Layout command 9-7
self GL-5
SetBreakPointLabel function 7-13
SetCurrentPC function 7-17
Set Default Window Position 9-30
Set Grid command 9-22
SetLocalizationFrame function 4-46 to 4-47
SetNamedVar function 7-19
SetTempVar function 7-18
Settings 9-17
Shift Left command 9-6
Shift Right command 9-6
Show Slot Values command 9-28
Size 4-24
slot
global GL-3
slots
creating 5-19 to 5-23
displaying in browser 4-27
editing 5-20 to 5-24

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

IN-5

INDEX

in stack trace 6-12
searching for 5-25 to 5-28
slot types 5-20 to 5-23
Slots By Name command 9-28
Slots By Type command 9-28
Snarf application E-1
'SND ' resources 8
software requirements 1-2
sound 5
stack activation records 6-12, 7-6
stack level 6-12, 7-16
stacks 7-6
functions for manipulating 7-16 to 7-20
stack trace 6-12 to 6-13
StackTrace function 6-12 to 6-13, 6-27, 7-6, 7-16
Standard Toolbar 4-20
Stats function 6-16, 6-28
Step function 7-15
Stepln function 7-15
StepOut function 7-15
store parts 4-18, 4-50, GL-6
stores GL-6
stream files 4-5, 4-18, 4-41, 4-50 to 4-51
Suppress Byte Code 4-15
symbol, application or book 4-7

T

tabs, setting 4-28
Template Info command 3-9, 5-13 to 5-14, 9-25
templates
defined 2-2
displaying in browser 4-26
editing 3-11 to 3-13, 5-16 to 5-24
processing 4-53 to 4-54
searching for 5-25 to 5-28
Templates By Hierarchy command 9-27
Templates By Type command 9-27
text
editing 5-23 to 5-24, A-1to ??
searching for 5-25 to 5-27
setting display characteristics 4-28
setting tabs 4-28
text files 4-4, 4-31 to 4-38
text slots 5-21
Text Views Preferences 4-27
Tighter Object Packing 4-16
Tile 9-30
Toolkit application 1-4 to 1-6
Toolkit.pkg 1-3
Toolkit Preferences command 4-19 to ??, 9-9
Tooltips 4-21
Trace Off button 6-15

IN-6

trace variable 6-14, 6-21
troubleshooting 1-7 to 1-8
TrueSize function 6-16 to 6-20, 6-28

U

UndefineGlobalConstant function 4-38
Undo command 9-5
Update File command 9-16
Use compression 4-11
user proto templates
creating 5-16
example 3-23 to 3-30
Using Help 9-30

\%

variables defined by NTK 4-34 to 4-36
version number, package 4-12
vFlags application E-1
ViewAutopsy function 6-20 to 6-21, 6-30
viewBounds slot fields D-2
view classes 5-3, GL-6
view frames 2-2
viewFrontKey 6-9, 6-24
viewFrontMost 6-9, 6-24
viewFrontMostApp 6-9, 6-24
views
aligning 5-8 to 5-10
declaring 5-13
defined 2-1
displaying hierarchy 6-8 to 6-9, 6-23
displaying in browser 4-26
drawing 3-6 to 3-9, 5-4 to 5-6
moving 5-8
naming 3-9, 5-13
ordering 5-10
previewing 5-11
resizing 5-7
root GL-5

W

WAV 5
Where function 7-18
Write function 6-9, 6-25

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro 630 printer. Final page
negatives were output directly from the
text and graphics files. Line art was
created using Adobe " Illustrator.
PostScriptTM, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple
Courier.

LEAD WRITER
Aner J. Menendez

WRITERS
Aner J. Menendez, Norberto Menendez

PROJECT LEADER
Christopher Bey

ILLUSTRATOR S
Aner J. Menendez, Norberto Menendez

EDITOR
David Schneider

PROJECT MANAGER
Gerry Kane

Special thanks to Andy Atkins, Peter
Canning, Jerome Coonen, Bob Ebert,
Mike Engber, Sandy McEntee, David
Fedor, Sue Luttner, Ray Marshall, Jeff
Piazza, Uri Rabin, Keith Rollins, Walter
Smith, Michael Tibbott, Gregory Toto.

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

THE APPLE PUBLISHING SYSTEM

Draft. Preliminary, Confidential. ©1996 Apple Computer, Inc.

	Contents
	List of Figures
	About This Book
	Related Books
	How to Use This Book
	Conventions
	Developer Products and Support

	Installation and Setup
	System Requirements
	Table�1-1 Hardware and software requirements

	Installing NTK on the Development System
	Installing the Toolkit Application on the Newton
	Making the Physical Connection
	Downloading the Toolkit Application
	Figure�1-1 The Newton Toolkit application icon
	Figure�1-2 Toolkit Preferences-

	Testing an Inspector Connection
	Figure�1-3 The Toolkit application open on the New...

	Troubleshooting

	Programming With the Newton Toolkit
	Terms and Concepts
	The NTK Development Process
	Figure�2-1 The Newton application development proc...

	A Quick Tour of NTK
	Starting Up NTK
	Setting Up a New Project
	Starting a Layout File and Adding It to the Projec...
	Figure�3-1 Layout window and toolbar

	Laying Out Application Elements
	Customizing a View Template
	Editing a Slot
	Figure�3-2 A browser window

	Adding a Slot

	Building and Downloading a Package
	Adding a Linked Layout
	Laying Out a Linked View
	Linking in the Layout
	Adding a Button That Displays the View

	Defining Your Own Proto
	Laying Out a Proto and Adding It to the Toolbar
	Using Your Proto

	Using the Inspector
	Connecting the Inspector
	Executing Commands
	Looking at a Frame and a View
	Making a Change in a Running Application

	Managing and Building a Project
	Setting Up a Project
	Project File
	Figure�4-1 The project window

	Layout Files
	Text Files
	Bitmap and Sound Files
	Package Files
	Object Stream Files

	Establishing Settings and Preferences
	Application Settings
	Figure�4-2 Settings-Application

	Package Settings
	Figure�4-3 Settings-Package

	Project Settings
	Figure�4-4 Settings-Project

	Output Settings
	Figure�4-5 Settings-Output
	Output
	Result

	Toolkit Preferences
	App Preferences
	Figure�4-6 Toolkit Preferences-App

	Packages Preferences
	Figure�4-7 Toolkit Preferences-Packages

	Connection
	Build
	Heaps Preferences
	Figure�4-8 Toolkit Preferences-Heaps

	Layout Preferences
	Figure�4-9 Toolkit Preferences-Layout

	Browser Preferences
	Figure�4-10 Toolkit Preferences-Browsers
	Browsers
	View List
	Figure�4-11 The Text Style dialog box

	Slot List

	Text Views Preferences
	Figure�4-12 Toolkit Preferences-Text Views

	Building a Project
	The Build Environment
	Global Data File
	Platform Files
	Text Files
	Install Scripts
	Remove Scripts

	Constants and Variables
	Table�4-1 Build constants defined by NTK

	Compile-Time Functions
	Defining Global Constants
	DefineGlobalConstant
	UndefineGlobalConstant
	IsGlobalConstant

	Accessing Processed Templates
	GetLayout

	Accessing the Part Frame
	SetPartFrameSlot
	GetPartFrameSlot

	Accessing Files That Aren’t in the Project
	Load
	ReadStreamFile

	Project-Build Function Summary

	Build Options
	Compiling Native Code
	Embedding Debugging Information
	Combining Objects
	Profiling
	Establishing a Local Language
	Output Options
	Figure�4-13 Output Settings
	Application Parts
	Book Parts
	Auto Parts
	Parts in Auto-Remove Packages
	Store Parts
	Stream Files
	Custom Parts
	Figure�4-14 Custom part settings

	Build Sequences
	Building a Project
	Processing a Template

	Error Messages

	Laying Out and Editing Views
	Laying Out Views
	Figure�5-1 Layout window and toolbar
	Drawing, Resizing, and Moving Views
	Drawing a View
	Figure�5-2 A layout window with the layout view an...

	Resizing a View
	Moving a View
	Aligning Views
	Figure�5-3 The Alignment dialog box
	Vertical Spacing
	Horizontal Spacing

	Ordering Views

	Previewing
	Figure�5-4 The layout window in layout and preview...

	Naming and Declaring Views
	Figure�5-5 The Template Info dialog box, for namin...

	Linking Multiple Layouts
	Figure�5-6 Declaring views across linked layout fi...

	Creating User Protos

	Browsing and Editing Templates
	Browsing Templates
	Figure�5-7 A browser window with the view flags sl...

	Adding Slots
	Figure�5-8 The New Slot dialog box
	Figure�5-9 The Editor drop listin the New Slot dia...

	Editing Slots
	Figure�5-10 Initial contents of evaluate, script, ...
	Figure�5-11 The number, Boolean, rectangle, and pi...

	Editing Text
	Figure�5-12 The Inspector window with a help messa...

	Searching for Text in Files
	Searching Template Files
	Figure�5-13 The Search dialog box

	Searching the Active Window
	Figure�5-14 The dialog for searching with Find

	Finding Views in a Layout File

	Adding Non-View Objects
	Customizing the Text Editor

	Debugging
	Compatibility
	The Inspector
	Figure�6-1 Inspector window
	Figure�6-2 The debugging cycle
	Using the Inspector
	Figure�6-3 Inspector controls
	Making an Inspector Connection
	Retrieving Views
	Displaying the View Hierarchy
	Figure�6-4 The DV display

	Displaying Values in the Inspector Window
	Examining a Binary Object
	Breaking
	Examining the Program Stack
	Tracing the Flow of Execution
	Examining Memory Use
	Figure�6-5 A TrueSize display
	Figure�6-6 A TrueSize display with object list
	Figure�6-7 The TrueSize summary and result frame
	Figure�6-8 A TrueSize listing of references
	Figure�6-9 TrueSize measurements over time

	Examining Drawing Efficiency

	Debugging Variables
	Table�6-1 Debugging variables (continued)

	Debugging Functions
	Retrieving and Displaying Objects
	Debug
	DV
	Print
	Display
	Write
	StrHexDump

	Using Break Loops
	BreakLoop
	ExitBreakLoop
	StackTrace
	GetLocalFromStack
	GetSelfFromStack

	Examining Memory Use
	Stats
	TrueSize
	GC

	Examining Drawing Efficiency
	ViewAutopsy

	Debugging Function Summary
	Retrieving and Displaying Objects
	Using Break Loops
	Examining Memory Use
	Examining Drawing Efficiency

	Newton Programming Problems and Tips
	Common Programming Problems
	Setting the Wrong Slot Value
	Failing to Set a Return Value
	Producing Memory Problems With Unused Frame Refere...
	Generating Unexpected Comparison Results With nil ...
	Using nil in Expressions
	Writing to a Read-Only Object
	Text Is Not Drawing
	Problems with Printing and Communications

	Programming Tips for Debugging
	Using Global Variables to Examine Exceptions
	Table�6-2 Exception handling global variables

	Maintaining View State
	Accessing the Parent of a View

	Extended Debugging Functions
	Compatibility
	Installing the Extended Debugging Functions
	Using the Extended Debugging Functions
	Break Loops and Break Points
	Enabling Break Points
	Creating, Removing, and Disabling Break Points
	Making Break Points Conditional
	Entering a Break Loop

	NewtonScript Stacks
	Paths to Slots
	NewtonScript Byte Code

	Extended Debugging Functions Reference
	Adjusting the Debugging Environment
	Manipulating Break Points
	InstallBreakPoint
	RemoveBreakPoint
	EnableBreakPoint
	RemoveAllBreakPoints
	GetAllBreakPoints
	GloballyEnableBreakPoints
	SetBreakPointLabel
	GetBreakPointLabel
	User-Defined Breakpoint Functions
	NSDBreakLoopEntry
	NSDBreakLoopExit

	Stepping
	Step
	StepIn
	StepOut
	RunUntil

	Accessing the Stack
	StackTrace
	GetCurrentFunction
	GetCurrentPC
	SetCurrentPC
	Where
	GetAllTempVars
	GetTempVar
	SetTempVar
	GetAllNamedVars
	GetNamedVar
	SetNamedVar
	GetCurrentReceiver
	GetCurrentImplementor

	Retrieving Paths
	GetPathToSlot
	GetPathWhereSet

	Disassembling
	Disasm
	DisasmRange

	Summary of Extended Debugging Functions
	Manipulating Break Points
	Stepping
	Accessing the Stack
	Retrieving Paths
	Disassembling

	Interpreter Instructions
	Stack Operations
	Pop
	PushSelf
	Push
	PushConstant
	FindVar
	GetVar
	MakeFrame
	MakeArray
	GetPath
	SetPath
	SetVar
	SetFindVar
	SetLexScope

	Program Flow
	While and Repeat/Until Loops
	Branch
	BranchT
	BranchF

	For Loops
	IncrVar
	BranchIfLoopNotDone

	Foreach Loops (Frame and Array Iterators)
	IterNext
	IterDone

	Exception Handling
	NewHandlers
	PopHandlers

	Calling and Returning Functions
	Call
	Invoke
	Send
	SendIfDefined
	Resend
	ResendIfDefined
	Return

	Primitive Functions
	Add
	Subtract
	Multiply
	Divide
	Div
	ARef
	SetARef
	NewIterator
	Length
	AddArraySlot
	Equals
	NotEquals
	LessThan
	GreaterThan
	GreaterOrEqual
	LessOrEqual
	Not
	BitAnd
	BitOr
	BitNot
	Clone
	SetClass
	Stringer
	HasPath
	ClassOf

	Tuning Performance
	Measuring Performance
	Marking Functions for Profiling
	Figure�7-1 A performance profile

	Configuring the Compiler for Profiling
	Figure�7-2 The Project Settings dialog box

	Configuring the Profiler on the Newton
	Figure�7-3 Profile Control on the Newton
	Figure�7-4 Profiler Info
	Figure�7-5 Profiler Settings on the Newton

	Collecting Statistics
	Interpreting a Profile
	Figure�7-6 A performance profile

	Compiling Functions for Speed
	Declaring and Typing Variables
	Stepping Through an Array
	Handling Exceptions
	Calling Other Functions
	Calling Options
	Global Function Call
	Table�7-1 Utility functions optimized for calling ...

	Call/With Syntax
	Message Send

	Timing Interactions
	Table�7-2 Function call operations

	An Optimization Example
	Profiling Native Functions
	Figure�7-7 A profile of a native function calling ...
	Figure�7-8 A profile of a native function calling ...

	NTK Commands
	File Menu
	New Layout (Ctrl-N)
	New Proto Template (Ctrl-T)
	New Text File
	Open (Ctrl-O)
	Link Layout
	Close (Ctrl-W)
	Save (Ctrl-S)
	Save As
	Save All (Ctrl-M)
	Revert
	Print Setup
	Print One
	Print (Ctrl-P)
	Exit
	Recent File

	Edit Menu
	Undo (Ctrl-Z)
	Redo (Ctrl-A)
	Cut (Ctrl-X)
	Copy (Ctrl-C)
	Paste (Ctrl-V)
	Clear (Delete)
	Duplicate (Ctrl-D)
	Shift Left
	Shift Right
	Select All (Ctrl-A)
	Select Hierarchy
	Select in Layout
	Search (Ctrl-R)
	Figure8-1 The dialog for searching with Search

	Find (Ctrl-F)
	Figure0-1 The dialog for searching with Find

	Find Next (Ctrl-G)
	Find Inherited
	Newt Screen Shot
	Toolkit Preferences
	Figure8-2 The App preferences of the Toolkit Prefe...
	Figure8-3 The Layout preferences of the Toolkit Pr...
	Figure8-4 The Browsers preferences of the Toolkit ...
	Figure8-5 The Text Viewspreferences of the Toolkit...
	Figure8-6 The Packages preferences of the Toolkit ...
	Figure8-7 The Heaps preferences of the Toolkit Pre...

	Project Menu
	New Project
	Open Project
	Add Window
	Add File
	Remove File
	Update Files
	Build Package (Ctrl-1)
	Download Package (Ctrl-2)
	Export Package to Text
	Install Toolkit App
	Mark as Main Layout
	Process Earlier (Ctrl-Up Arrow)
	Process Later (Ctrl-Down Arrow)
	Settings
	Figure8-8 The Application Settings panel of the Se...
	Figure8-9 The Package Settings panel of the Settin...
	Figure8-10 The Project Settings panel of the Setti...
	Figure8-11 The Output Settings panel of the Settin...

	Layout Menu
	Layout Size
	Figure8-12 The Layout Size dialog box

	Autogrid On
	Set Grid
	Figure8-13 The Set Grid dialog box

	Move To Front
	Move Forward (Ctrl-Down Arrow)
	Move To Back
	Move Backward (Ctrl-Up Arrow)
	Alignment
	Figure8-14 The Alignment dialog box
	Figure8-15 The alignment buttons on the palette

	Align
	Preview (Ctrl-Y)

	Browser Menu
	Template Info (Ctrl-I)
	Figure8-16 The Template Info dialog box, for namin...

	New Slot
	Figure8-17 The New Slot dialog box

	Rename Slot
	Figure8-18 The Rename Slot dialog box

	Templates By Type
	Templates By Hierarchy
	Slots By Name
	Slots By Type
	Show Slot Values
	Apply (Ctrl-E)
	Revert

	Window Menu
	Open Inspector
	Connect Inspector (Ctrl-K)
	New Browser (Ctrl-B)
	Open Layout (Ctrl-L)
	Cascade
	Tile
	Arrange Icons
	Set Default Window Position

	Help Menu
	Index
	Command Reference
	Using Help
	About Newton Toolkit

	Keyboard Text-Editing Commands
	Setting the Insertion Point
	Table A-1 Moving the insertion point

	Selecting Text
	Table A-2 Selecting text with keyboard commands

	Manipulating Selected Text
	Table A-3 Manipulating selected text

	Deleting Text
	Table A-4 Deleting text with keyboard commands

	Keyboard Shortcuts
	Table B-1 Keyboard equivalents to menu items (cont...
	Table B-2 Keyboard commands that affect the hierar...

	Custom Bitmaps and Sounds
	Adding Bitmap and Sound Files to a Project
	Using Bitmap and Sound Files
	Opening and Closing Resource Files

	Using the Resource-Handling Functions
	Using Bitmaps
	Figure C-1 Adding a named 'BMP' file to a picture ...
	Making a Bitmap From a 'BMP' File

	Using External Sound Files

	Custom Functions
	Retrieving Resources
	GetBMPAsBits
	GetWAVAsSamples
	LoadDataFile

	Summary of Custom Functions
	Getting Custom Data

	Specialized Slot Editors
	Script Slots
	View Attributes
	viewBounds
	Table D-1 Meaning of viewBounds fields for horizon...
	Table D-2 Meaning of viewBounds fields for vertica...

	viewFlags
	viewFormat
	viewJustify
	viewEffect
	viewTransferMode

	Specific Slots

	Newton Debugging Applications
	Installing the Debugging Packages
	HeapShow
	About HeapShow
	About Newton Memory Management
	Using HeapShow
	Figure D-1 The HeapShow icon
	Figure D-2 The default HeapShow display
	Statistics Display
	Figure D-3 Numerical data versus fragmentation gra...

	Preferences
	Figure D-4 HeapShow Preferences
	Figure D-5 Sizing the reserve pointers heap or a n...
	Figure D-6 Check Interval options

	HeapShow Controls
	Figure D-7 The HeapShow controls
	Figure D-8 Heap fragmentation graphics

	Glossary

